Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Salavessa, Isabel M. C."'
Autor:
Salavessa, Isabel M. C.
Publikováno v:
Annals of Global Analysis and Geometry, March 2018, Volume 53, Issue 2, pp 265 - 281
If a graph submanifold $(x,f(x))$ of a Riemannian warped product space $(M^m\times_{e^{\psi}}N^n,\tilde{g}=g+e^{2\psi}h)$ is immersed with parallel mean curvature $H$, then we obtain a Heinz type estimation of the mean curvature. Namely, on each comp
Externí odkaz:
http://arxiv.org/abs/1701.00290
Autor:
Morgan, Frank, Salavessa, Isabel M. C.
We consider three generalizations of the isoperimetric problem to higher codimension and provide results on equilibrium, stability, and minimization.
Comment: 13 pages, 1 figure; v2: Minor revision to appear in Manuscripta Mathematica
Comment: 13 pages, 1 figure; v2: Minor revision to appear in Manuscripta Mathematica
Externí odkaz:
http://arxiv.org/abs/1203.3304
Autor:
Salavessa, Isabel M. C.
By only using spectral theory of the Laplace operator on spheres, we prove that the unit 3-dimensional sphere of a 2-dimensional complex subspace of $\mathbb{C}^3$ is a $\Omega$-stable submanifold with parallel mean curvature, when $\Omega$ is the K\
Externí odkaz:
http://arxiv.org/abs/1111.3287
Autor:
Salavessa, Isabel M. C.
We prove that an integral Cauchy-Riemann inequality holds for any pair of smooth functions $(f,h)$ on the 2-sphere $\mathbb{S}^2$, and equality holds iff $f$ and $h$ are related $\lambda_1$-eigenfunctions. We extend such inequality to 4-tuples of fun
Externí odkaz:
http://arxiv.org/abs/1105.3153
Autor:
Salavessa, Isabel M. C.
Publikováno v:
Bull Braz Math Soc (NS) 41(4)(2010), 495-530
On a Riemannian manifold $\bar{M}^{m+n}$ with an $(m+1)$-calibration $\Omega$, we prove that an $m$-submanifold $M$ with constant mean curvature $H$ and calibrated extended tangent space $\mathbb{R}H\oplus TM$ is a critical point of the area function
Externí odkaz:
http://arxiv.org/abs/0911.4689
Autor:
Salavessa, Isabel M. C.
We prove, under a certain boundedness condition at infinity on the $(\bar{X}^{\top}, \bar{X}^{\bot})$-component of the second fundamental form, the vanishing of the essential spectrum of a complete minimal $\bar{X}$-bounded and $\bar{X}$-properly imm
Externí odkaz:
http://arxiv.org/abs/0901.1246
Autor:
Li, Guanghan, Salavessa, Isabel M. C.
This is a survey of our work on spacelike graphic submanifolds in pseudo-Riemannian products, namely on Heinz-Chern and Bernstein-Calabi results and on the mean curvature flow, with applications to the homotopy of maps between Riemannian manifolds.
Externí odkaz:
http://arxiv.org/abs/0810.3371
Autor:
Li, Guanghan, Salavessa, Isabel M. C.
We prove the mean curvature flow of a spacelike graph in $(\Sigma_1\times \Sigma_2, g_1-g_2)$ of a map $f:\Sigma_1\to \Sigma_2$ from a closed Riemannian manifold $(\Sigma_1,g_1)$ with $Ricci_1> 0$ to a complete Riemannian manifold $(\Sigma_2,g_2)$ wi
Externí odkaz:
http://arxiv.org/abs/0804.0783
Autor:
Li, Guanghan, Salavessa, Isabel M. C.
Publikováno v:
Rev. Mat. Iberoamericana Volume 26, Number 2 (2010), 651-692
Given $(\bar{M},\Omega)$ a calibrated Riemannian manifold with a parallel calibration of rank $m$, and $M^m$ an immersed orientable submanifold with parallel mean curvature $H$ we prove that if $\cos \theta$ is bounded away from zero, where $\theta$
Externí odkaz:
http://arxiv.org/abs/0802.0946
Autor:
Li, Guanghan, Salavessa, Isabel M. C.
Publikováno v:
Journal of Geometry and Physics, Volume 59, Issue 9, 2009, 1306-1313
We generalize a Bernstein-type result due to Albujer and Al\'ias, for maximal surfaces in a curved Lorentzian product 3-manifold of the form $\Sigma_1\times \mathbb{R}$, to higher dimension and codimension. We consider $M$ a complete spacelike graphi
Externí odkaz:
http://arxiv.org/abs/0801.3850