Zobrazeno 1 - 10
of 488
pro vyhledávání: '"Saker, S."'
Discrete Rubio de Francia extrapolation theorem via factorization of weights and iterated algorithms
In this paper, we prove a discrete Rubio de Francia extrapolation theorem via factorization of discrete Muckenhoupt weights and discrete iterated Rubio de Francia algorithm and its duality.
Externí odkaz:
http://arxiv.org/abs/2304.14250
Autor:
Saker, S. H., Agarwal, R. P.
Publikováno v:
Applicable Analysis and Discrete Mathematics, 2021 Oct 01. 15(2), 295-316.
Externí odkaz:
https://www.jstor.org/stable/27090831
Autor:
Saker, S. H.1 (AUTHOR), Mahmoud, R. R.2,3 (AUTHOR) rrm00@fayoum.edu.eg, Hassan, M. H.4 (AUTHOR)
Publikováno v:
Ukrainian Mathematical Journal. Aug2023, Vol. 75 Issue 3, p456-477. 22p.
Autor:
Saker, S. H.1,2 (AUTHOR), Zakarya, M.3,4 (AUTHOR), AlNemer, Ghada5 (AUTHOR), Rezk, H. M.6 (AUTHOR) haythamrezk64@yahoo.com
Publikováno v:
Journal of Inequalities & Applications. 5/29/2023, Vol. 2023 Issue 1, p1-21. 21p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Saker, S. H.
In this paper, we will prove several new inequalities of Hardy's types with explicit constants. The main results will be proved by making use of some generalizations of Opial's type inequalities and H\"older's inequality. To the best of the author's
Externí odkaz:
http://arxiv.org/abs/1112.4122
Autor:
Saker, S. H., Steuding, J.
In this paper, we derive new lower bounds for the normalized distances between consecutive maxima of the Riemann zeta-function on the critical line subject to the truth of the Riemann hypothesis. The method of our proofs relies on a Sobolev type ineq
Externí odkaz:
http://arxiv.org/abs/1109.3855
Autor:
Saker, S. H.
In this paper, we prove the lower bound of the unconditional large gap is 3.5555 which improves the obtained value 3.079 in the literature. Next, on the hypothesis that the moments of the Hardy Z-function and its derivatives are correctly predicted w
Externí odkaz:
http://arxiv.org/abs/1002.2695
Autor:
Saker, S. H.
In this paper, first by employing inequalities derived from the Opial inequality due to David Boyd with best constant, we will establish new unconditional lower bounds for the gaps between the zeros of the Riemann zeta function. Second, on the hypoth
Externí odkaz:
http://arxiv.org/abs/1001.0494