Zobrazeno 1 - 10
of 88
pro vyhledávání: '"Sakane, Yusuke"'
Publikováno v:
Results Math. 79(2) (2024) Article 42
We obtain new invariant Einstein metrics on the compact Lie groups $\SO(n)$ which are not naturally reductive. This is achieved by using the real flag manifolds $\SO(k_1+\cdots +k_p)/\SO(k_1)\times\cdots\times\SO(k_p)$ and by imposing certain symmetr
Externí odkaz:
http://arxiv.org/abs/2409.18990
Publikováno v:
Tohoku Math. J. 72 (2) (2020) 161-210
We study existence of invariant Einstein metrics on complex Stiefel manifolds $G/K = \SU(\ell+m+n)/\SU(n) $ and the special unitary groups $G = \SU(\ell+m+n)$. We decompose the Lie algebra $\frak g$ of $G$ and the tangent space $\frak p$ of $G/K$, by
Externí odkaz:
http://arxiv.org/abs/2002.10359
Autor:
Chrysikos, Ioannis, Sakane, Yusuke
We study homogeneous Einstein metrics on indecomposable non-K\"ahlerian C-spaces, i.e. even-dimensional torus bundles $M=G/H$ with $\mathsf{rank} G>\mathsf{rank} H$ over flag manifolds $F=G/K$ of a compact simple Lie group $G$. Based on the theory of
Externí odkaz:
http://arxiv.org/abs/2002.07861
Publikováno v:
J. Symbolic Comput. 101 (2020) 189-201
We study invariant Einstein metrics on the Stiefel manifold $V_k\mathbb{R}^n\cong \mathrm{SO}(n)/\mathrm{SO}(n-k)$ of all orthonormal $k$-frames in $\mathbb{R}^n$. The isotropy representation of this homogeneous space contains equivalent summands, so
Externí odkaz:
http://arxiv.org/abs/1810.01292
Publikováno v:
Adv. Geom. 18 (4) (2018) 509-524
We consider invariant Einstein metrics on the quaternionic Stiefel manifolds $V_p\mathbb{H} ^n$ of all orthonormal $p$-frames in $\mathbb{H}^n$. This manifold is diffeomorphic to the homogeneous space $\mathrm{Sp}(n) / \mathrm{Sp}(n-p)$ and its isotr
Externí odkaz:
http://arxiv.org/abs/1810.00655
Autor:
Chrysikos, Ioannis, Sakane, Yusuke
Publikováno v:
In Journal of Geometry and Physics February 2021 160
Publikováno v:
Geom. Imaging Comput. 2 (2) (2015)
We obtain new invariant Einstein metrics on the compact Lie groups $SO(n)$ ($n \geq 7$) which are not naturally reductive. This is achieved by imposing certain symmetry assumptions in the set of all left-invariant metrics on $SO(n)$ and by computing
Externí odkaz:
http://arxiv.org/abs/1511.08849
Autor:
Chrysikos, Ioannis, Sakane, Yusuke
Publikováno v:
J. Geom. Phys, Vol 116, (2017), 152-186
Given an exceptional compact simple Lie group $G$ we describe new left-invariant Einstein metrics which are not naturally reductive. In particular, we consider fibrations of $G$ over flag manifolds with a certain kind of isotropy representation and w
Externí odkaz:
http://arxiv.org/abs/1511.03993
Publikováno v:
In Journal of Symbolic Computation November-December 2020 101:189-201
Publikováno v:
Differential Geom. Appl. 35 (2014) S2-S18
We consider invariant Einstein metrics on the Stiefel manifold $V_q\bb{R} ^n$ of all orthonormal $q$-frames in $\bb{R}^n$. This manifold is diffeomorphic to the homogeneous space $\SO(n)/\SO(n-q)$ and its isotropy representation contains equivalent s
Externí odkaz:
http://arxiv.org/abs/1311.1579