Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Sajith Padinhatteeri"'
Publikováno v:
Discrete Applied Mathematics. 328:97-107
Publikováno v:
Graph-Theoretic Concepts in Computer Science ISBN: 9783031159138
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c6f1a7839563193bf6b23eef6f0b7df3
https://doi.org/10.1007/978-3-031-15914-5_10
https://doi.org/10.1007/978-3-031-15914-5_10
Publikováno v:
Ars Mathematica Contemporanea. 17:311-318
For a graph G and a positive integer k , a vertex labelling f : V ( G ) → {1, 2, …, k } is said to be k -distinguishing if no non-trivial automorphism of G preserves the sets f − 1 ( i ) for each i ∈ {1, …, k } . The distinguishing chromati
Publikováno v:
Algorithms and Discrete Applied Mathematics ISBN: 9783030678982
CALDAM
CALDAM
For efficient design of parallel algorithms on multiprocessor architectures with memory banks, simultaneous access to a specified subgraph of a graph data structure by multiple processors requires that the data items belonging to the subgraph reside
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b5d620401fc63446aef39dcdd777a490
https://doi.org/10.1007/978-3-030-67899-9_36
https://doi.org/10.1007/978-3-030-67899-9_36
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030799861
IWOCA
IWOCA
An s-club is a graph which has diameter at most s. Let G be a graph. A set of vertices \(D\subseteq V(G)\) is an s-club deleting (s -CD) set if each connected component of \(G-D\) is an s-club. In the s -Club Cluster Vertex Deletion (s -CVD) problem,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::57b8f668fee9f0e5e2204872fd38c733
https://doi.org/10.1007/978-3-030-79987-8_11
https://doi.org/10.1007/978-3-030-79987-8_11
Publikováno v:
Algorithms and Discrete Applied Mathematics ISBN: 9783030392185
CALDAM
CALDAM
A graph G is said to be k-distinguishable if every vertex of the graph can be colored from a set of k colors such that no non-trivial automorphism fixes every color class. The distinguishing number D(G) is the least integer k for which G is k-disting
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d669700639ee03ae4f7fc9930fcc8a13
https://doi.org/10.1007/978-3-030-39219-2_20
https://doi.org/10.1007/978-3-030-39219-2_20
Publikováno v:
Discrete Applied Mathematics. 236:30-41
A graph $G$ is said to be $k$-distinguishable if the vertex set can be colored using $k$ colors such that no non-trivial automorphism fixes every color class, and the distinguishing number $D(G)$ is the least integer $k$ for which $G$ is $k$-distingu
Publikováno v:
Ars Mathematica Contemporanea. 12:89-109
The Distinguishing Chromatic Number of a graph G , denoted χ D ( G ) , was first defined in K. L. Collins and A. N. Trenk, The distinguishing chromatic number, Electron. J. Combin. 13 (2006), #R16, as the minimum number of colors needed to properly
The \textit{Distinguishing Chromatic Number} of a graph $G$, denoted $\chi_D(G)$, was first defined in \cite{collins} as the minimum number of colors needed to properly color $G$ such that no non-trivial automorphism $\phi$ of the graph $G$ fixes eac
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2e10c077de162e99b47e2db983ca152e
http://arxiv.org/abs/1406.5358
http://arxiv.org/abs/1406.5358