Zobrazeno 1 - 10
of 1 099
pro vyhledávání: '"Saito, Kei"'
Autor:
Saito, Kei, Segawa, Etsuo
We propose a class of continuous-time quantum walk models on graphs induced by a certain class of discrete-time quantum walk models with the parameter $\epsilon\in [0,1]$. Here the graph treated in this paper can be applied both finite and infinite c
Externí odkaz:
http://arxiv.org/abs/2308.13741
It is recently shown by Asahara-Funakawa-Seki-Tanaka that existing index theory for chirally symmetric (discrete-time) quantum walks can be extended to the setting of non-unitary quantum walks. More precisely, they consider a certain non-unitary vari
Externí odkaz:
http://arxiv.org/abs/2205.11046
Publikováno v:
In NeuroImage 1 October 2024 299
Autor:
Nishimura, Tomohiro, Araki, Hikari, Higuchi, Kei, Noguchi, Saki, Saito, Kei, Hara, Kanako, Yagishita, Haruya, Akashi, Risa, Obata, Sakiko, Tomi, Masatoshi
Publikováno v:
In Placenta 6 March 2024 147:59-67
Autor:
Kiumi, Chusei, Saito, Kei
Publikováno v:
Quantum Information Processing, Vol.21, No.330 (2022)
Localization is a characteristic phenomenon of space-inhomogeneous quantum walks in one dimension, where particles remain localized around their initial position. The existence of eigenvalues of time evolution operators is a necessary and sufficient
Externí odkaz:
http://arxiv.org/abs/2105.10962
The conventional spectral mapping theorem for quantum walks can only be applied for walks employing a shift operator whose square is the identity. This theorem gives most of the eigenvalues of the time evolution $U$ by lifting the eigenvalues of an i
Externí odkaz:
http://arxiv.org/abs/2103.05235
Publikováno v:
In Journal of Solid State Chemistry January 2024 329
Autor:
Sakurai, Kazuki1,2 (AUTHOR) kzk.sakurai.2212@gmail.com, Saito, Kei1 (AUTHOR), Hatta, Shunsuke1 (AUTHOR), Katsuoka, Yuna1 (AUTHOR), Meguro, Kuniaki1 (AUTHOR), Yokoyama, Hisayuki1,2 (AUTHOR), Izumi, Toru1 (AUTHOR)
Publikováno v:
Clinical Case Reports. May2024, Vol. 12 Issue 5, p1-5. 5p.
Autor:
Kiumi, Chusei, Saito, Kei
Publikováno v:
Quantum Information Processing, Vol.20, No.171 (2021)
We study space-inhomogeneous quantum walks (QWs) on the integer lattice which we assign three different coin matrices to the positive part, the negative part, and the origin, respectively. We call them two-phase QWs with one defect. They cover one-de
Externí odkaz:
http://arxiv.org/abs/2010.08324
This paper studies the spectrum of a multi-dimensional split-step quantum walk with a defect that cannot be analysed in the previous papers. To this end, we have developed a new technique which allow us to use a spectral mapping theorem for the one-d
Externí odkaz:
http://arxiv.org/abs/2008.08846