Zobrazeno 1 - 10
of 1 112
pro vyhledávání: '"Saint Raymond A"'
Autor:
Devouassoux, G., Taillé, C., Chanez, P., Bonniaud, P., Bourdin, A., Saint Raymond, C., Maurer, C., Beurnier, A., Roux, P., Margelidon, V., Boudjemaa, A., Mangiapan, G., Freymond, N., Didi, T., Russier, M., Garcia, G., Meyer, E. Popin, Dupin, C., Fouquet, F., Jouveshomme, S., Gaspard, W., Dury, S., Maillard, S. Habib, Izadifar, A., Cuvillon, E., Deslée, G., Barnig, C., Perotin, J.M., Gamez, A.S., Oster, J.P., Khayat, N., Chenivesse, C., Li, X., Appere de Vecchi, C., Gicquello, A., Rami, H., Vignal, G., Just, N., Blanc, X., Leroyer, C., Wemeau, L., Achkar, A., Sattler, C., Catherinot, E., Guilleminault, L., Gaillot-Drevon, M., Rochefort-Morel, C., Couturaud, F., Martin, P., Chabrol, A., Pegliasco, H., Sése, L., Romanet, S., Caverstri, B., Tcherakian, C., Magnan, A., Ahmed, E., Allibe, F., Beltramo, G., Michaux, K., Paleiron, N., Martinez, S., Begne, C., Tummino, C., Givel, C., Mourin, G., Salvator, H., Volpato, M., Drucbert, M., Rossignoli, N., Keddache, S., Justet, A., Andrejak, C., Valcke, J., Perrin, J., Mercy, M., Jouvenot, M., Soumagne, T., Elharrar, X., Douvry, B., Godbert, B., Maitre, B., Goyard, C., Didier, A., Cadet, E., Chabot, F., Gonzalez, J., Mattei, L., Gouitaa, M., Chauveau, S., Raymond, S., Dirou, S., Fry, S., Briault, A., Moui, A., Paris, A., NoelSavina, E., Olivier, C., Caradec, E., Roche, N., Picart, G., Belmont, L., Portel, L., Serra, M. Rocca, Guibert, N., Jean, R., Hadjadj, S., Guillo, S., Gauquelin, L., Estellat, C., Prigent, A., Larrousse, M., Jaffuel, D., Bourayou, Karima, Klising, Eve, Yelles, Nessima, Pochon, Sarra, Gouider, Amal, Medina, Hadj Kaci, Yasmine, Sellali, Djouher, Dahmani, Ndao, Diakhou, Vacher, Yannick, Achkar, Antoine, Ahmed, Engi, Alain, Didier, Allibe, Flora, Andrejak, Claire, De Vecchi, Corinne Appere, Barnig, Cindy, Begne, Camille, Belmont, Laure, Beltramo, Guillaume, Blanc, Xavier, Briault, Amandine, Cadet, Emmanuelle, Caradec, Emmanuela, Catherinot, Émilie, Cavestri, Beatrice, Chabrol, Alexandre, Chanez, Pascal, Chauveau, Simon, Couturaud, Francis, Cuvillon, Édouard, Deslee, Gaëtan, Didi, Toufik, Dirou, Stéphanie, Douvry, benoît, Drucbert, Mélanie, Dupin, Clairelyne, Dury, Sandra, Elharrar, Xavier, Fouquet, Helen, Freymond, Nathalie, Fry, Stéphanie, Gaillot-Drevon, Maud, Gamez, Anne Sophie, Garcia, Gilles, Gaspard, Wanda, Gicquello, Alice, Givel, Claire, Godbert, benoit, Gonzalez, Jésus, Gouitaa, Marion, Goupil, François, Goyard, Céline, Guibert, Nicolas, Guilleminault, Laurent, Habib-Maillard, Stéphanie, Hadjadj, Samra, Izadifar, Armine, Jean, Romain, Jouvenot, marie, Jouveshomme, Stéphane, Just, Nicolas, Justet, Aurélien, Keddache, Sophia, Khayath, Naji, Lemaire, Bertrand, Leroyer, Christophe, Li, Xing, Magnan, Antoine, Maitre, Bernard, Mangiapan, Gilles, Margelidon, Victor, Martin, Pascale, Martinez, Stéphanie, Mattei, Laura, Maurer, Cyril, Mercy, Magalie, Michaux, Karine, Moui, Antoine, Mourin, Gisèle, Noel-Savina, Elisa, Olivier, Cécile, Oster, Jean-Philippe, Paleiron, Nicolas, Paris, Audrey, Pegliasco, Hervé, Perotin Collard, Jeanne-Marie, Perrin, Julie, Picart, Gaël, Pison, Christophe, Popin-Meyer, Élisabeth, Portel, Laurent, Rami, Hassina, Raymond, Stéphane, Serra, Mireille Rocca, Rochefort-Morel, Cécile, Romanet, Stéphanie, Rossignoli, Nadine, Roux, Pauline, Russier, Maud, Saint-Raymond, Christel, Salmeron, Sergio, Salvator, Helene, Sattler, Caroline, Sese, Lucile, Soumagne, Thibaud, Tcherakian, Colas, Tiotiu, Angélica, Tummino, Céline, Valcke-Brossollet, Judith, Vignal, Guillaume, Volpato, Mathilde, Wemeau, Lidwine, Valery, Solène, Simon-Tillaux, Noémie, Devouassoux, Gilles, Bonniaud, Philippe, Beurnier, Antoine, Boudjemaa, Amel, Chenivesse, Cécile, Bourdin, Arnaud, Gauquelin, Lisa, Guillo, Sylvie, Taillé, Camille, Estellat, Candice
Publikováno v:
In The Journal of Allergy and Clinical Immunology October 2024 154(4):922-932
Dynamics of dilute gases at equilibrium: from the atomistic description to fluctuating hydrodynamics
We derive linear fluctuating hydrodynamics as the low density limit of a deterministic system of particles at equilibrium. The proof builds upon previous results of the authors where the asymptotics of the covariance of the fluctuation field is obtai
Externí odkaz:
http://arxiv.org/abs/2210.11812
In [7], a cluster expansion method has been developed to study the fluctuations of the hard sphere dynamics around the Boltzmann equation. This method provides a precise control on the exponential moments of the empirical measure, from which the fluc
Externí odkaz:
http://arxiv.org/abs/2205.04110
The evolution of a gas can be described by different models depending on the observation scale. A natural question, raised by Hilbert in his sixth problem, is whether these models provide consistent predictions. In particular, for rarefied gases, it
Externí odkaz:
http://arxiv.org/abs/2201.10149
We study a hard sphere gas at equilibrium, and prove that in the low density limit, the fluctuations converge to a Gaussian process governed by the fluctuating Boltzmann equation. This result holds for arbitrarily long times. The method of proof buil
Externí odkaz:
http://arxiv.org/abs/2201.04514
Autor:
Debs, Gabriel, Saint Raymond, Jean
Publikováno v:
In Topology and its Applications 1 August 2024 353
It has been known since Lanford [19] that the dynamics of a hard sphere gas is described in the low density limit by the Boltzmann equation, at least for short times. The classical strategy of proof fails for longer times, even close to equilibrium.
Externí odkaz:
http://arxiv.org/abs/2012.03813
We present a mathematical theory of dynamical fluctuations for the hard sphere gas in the Boltzmann-Grad limit. We prove that: (1) fluctuations of the empirical measure from the solution of the Boltzmann equation, scaled with the square root of the a
Externí odkaz:
http://arxiv.org/abs/2008.10403
We develop a rigorous theory of hard-sphere dynamics in the kinetic regime, away from thermal equilibrium. In the low density limit, the empirical density obeys a law of large numbers and the dynamics is governed by the Boltzmann equation. Deviations
Externí odkaz:
http://arxiv.org/abs/2004.00311
The Fourier law of heat conduction describes heat diffusion in macroscopic systems. This physical law has been experimentally tested for a large class of physical systems. A natural question is to know whether it can be derived from the microscopic m
Externí odkaz:
http://arxiv.org/abs/1912.03947