Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Sai K Devana"'
Autor:
Brendan Y Shi, Alexander Upfill-Brown, Benjamin V Kelley, Dane J Brodke, Erik N Mayer, Sai K Devana, Thomas J Kremen, Christopher Lee
Publikováno v:
Journal of Shoulder and Elbow Arthroplasty, Vol 6 (2022)
Introduction The two historically dominant surgical options for displaced geriatric proximal humerus (PHFx) fractures are open reduction internal fixation (ORIF) and hemiarthroplasty (HA). However, shoulder arthroplasty (SA), predominantly in the for
Externí odkaz:
https://doaj.org/article/dff1d41c1f3a4692bd968fb27df0e103
Autor:
Sai K Devana, Akash A Shah, Changhee Lee, Andrew R Jensen, Edward Cheung, Mihaela van der Schaar, Nelson F SooHoo
Publikováno v:
Journal of Shoulder and Elbow Arthroplasty, Vol 6 (2022)
Background The demand and incidence of anatomic total shoulder arthroplasty (aTSA) procedures is projected to increase substantially over the next decade. There is a paucity of accurate risk prediction models which would be of great utility in minimi
Externí odkaz:
https://doaj.org/article/8b7ae52f1a1b4cb2b761764d1fbdb22b
Autor:
Alexandra I. Stavrakis, MD, Erik N. Mayer, MD, Sai K. Devana, MD, Madhav Chowdhry, MD, Matthew V. Dipane, BS, Edward J. McPherson, MD
Publikováno v:
Arthroplasty Today, Vol 13, Iss , Pp 199-204 (2022)
Background: Modular knee arthrodesis (MKA) is a salvage treatment option for patients with challenging periprosthetic joint infections (PJI). The purpose of this study was to investigate the outcomes of patients who underwent MKA for PJI with a singl
Externí odkaz:
https://doaj.org/article/3355f1c4798c4dc5952d29a879f4cd65
Autor:
Sai K. Devana , MD, Akash A. Shah , MD, Changhee Lee , BS, Varun Gudapati , MD, Andrew R. Jensen , MD, Edward Cheung , MD, Carlos Solorzano , BS, Mihaela van der Schaar , PhD, Nelson F. SooHoo , MD
Publikováno v:
Journal of Shoulder and Elbow Arthroplasty, Vol 5 (2021)
Background Reverse total shoulder arthroplasty (rTSA) offers tremendous promise for the treatment of complex pathologies beyond the scope of anatomic total shoulder arthroplasty but is associated with a higher rate of major postoperative complication
Externí odkaz:
https://doaj.org/article/f06ac149452a4beda76e95d3a85d5698
Autor:
Akash A. Shah, Sai K. Devana, Changhee Lee, Thomas E. Olson, Alexander Upfill-Brown, William L. Sheppard, Elizabeth L. Lord, Arya N. Shamie, Mihaela van der Schaar, Nelson F. SooHoo, Don Y. Park
Publikováno v:
Spine. 48:460-467
Publikováno v:
Injury. 53:661-668
Introduction: Geriatric distal femur fractures are challenging to treat. The high mortality rate associated with a loss of mobility in this population has led some authors to compare distal femur fractures to femoral neck fractures with respect to th
Autor:
Alexander Upfill-Brown, Brendan Shi, Carlos Maturana, Dane Brodke, Akash A Shah, Benjamin V Kelley, Erik N Mayer, Sai K Devana, Christopher Lee
Publikováno v:
Journal of Orthopaedic Trauma.
Autor:
Nelson F. SooHoo, Arya Nick Shamie, Akash A. Shah, Changhee Lee, Amador Bugarin, Mihaela van der Schaar, Don Y. Park, Elizabeth L. Lord, Sai K. Devana
Publikováno v:
European Spine Journal. 31:1952-1959
Posterior cervical fusion is associated with increased rates of complications and readmission when compared to anterior fusion. Machine learning (ML) models for risk stratification of patients undergoing posterior cervical fusion remain limited. We a
Autor:
Amador Bugarin, Don Y. Park, Nelson F. SooHoo, Akash A. Shah, Mihaela van der Schaar, Arya Nick Shamie, Changhee Lee, Sai K. Devana, Elizabeth L. Lord
Publikováno v:
World Neurosurg
Background Given the significant cost and morbidity of patients undergoing lumbar fusion, accurate preoperative risk-stratification would be of great utility. We aim to develop a machine learning model for prediction of major complications and readmi
Autor:
Mihaela van der Schaar, Sai K. Devana, Changhee Lee, Nelson F. SooHoo, BA Andrew R. Roney, Akash A. Shah
Publikováno v:
Arthroplasty Today
Arthroplasty Today, Vol 10, Iss, Pp 135-143 (2021)
Arthroplasty Today, Vol 10, Iss, Pp 135-143 (2021)
Background There remains a lack of accurate and validated outcome-prediction models in total knee arthroplasty (TKA). While machine learning (ML) is a powerful predictive tool, determining the proper algorithm to apply across diverse data sets is cha