Zobrazeno 1 - 10
of 67
pro vyhledávání: '"Sahoo, Satyajit"'
Autor:
Bhunia, Pintu, Sahoo, Satyajit
We develop a new refinement of the Kato's inequality and using this refinement we obtain several upper bounds for the numerical radius of a bounded linear operator as well as the product of operators, which improve the well known existing bounds. Fur
Externí odkaz:
http://arxiv.org/abs/2407.01962
The main goal of this article is to establish several new $\mathbb{A}$-numerical radius equalities and inequalities for $n\times n$ cross-diagonal, left circulant, skew left circulant operator matrices, where $\mathbb{A}$ is the $n\times n$ diagonal
Externí odkaz:
http://arxiv.org/abs/2312.12093
In this paper, we establish some upper bounds for Berezin number inequalities including of $2\times 2$ operator matrices and their off-diagonal parts. Among other inequalities, it is shown that if $T=\left[\begin{array}{cc} 0&X, Y&0 \end{array}\right
Externí odkaz:
http://arxiv.org/abs/2301.06603
An omitted value of a transcendental meromorphic function $f$ is called a Baker omitted value, in short \textit{bov} if there is a disk $D$ centered at the bov such that each component of the boundary of $f^{-1}(D)$ is bounded. Assuming that the bov
Externí odkaz:
http://arxiv.org/abs/2008.09797
Autor:
Sahoo, Satyajit
The main goal of this article is to establish several new upper and lower bounds for the $\mathbb{A}$-numerical radius of $2\times 2$ operator matrices, where $\mathbb{A}$ be the $2\times 2$ diagonal operator matrix whose diagonal entries are positiv
Externí odkaz:
http://arxiv.org/abs/2007.03512
Further inequalities for the $\mathbb{A}$-numerical radius of certain $2 \times 2$ operator matrices
Autor:
Feki, Kais, Sahoo, Satyajit
Let $\mathbb{A}= \begin{pmatrix} A & 0 \\ 0 & A \\ \end{pmatrix} $ be a $2\times2$ diagonal operator matrix whose each diagonal entry is a bounded positive (semidefinite) linear operator $A$ acting on a complex Hilbert space $\mathcal{H}$. In this pa
Externí odkaz:
http://arxiv.org/abs/2006.09312
Let ($\mathcal{H}, \langle . , .\rangle )$ be a complex Hilbert space and $A$ be a positive bounded linear operator on it. Let $w_A(T)$ be the $A$-numerical radius and $\|T\|_A$ be the $A$-operator seminorm of an operator $T$ acting on the semi-Hilbe
Externí odkaz:
http://arxiv.org/abs/2004.07494
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Bulletin of the Malaysian Mathematical Sciences Society; Jul2024, Vol. 47 Issue 4, p1-20, 20p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.