Zobrazeno 1 - 10
of 100
pro vyhledávání: '"Sahandi, Parviz"'
Autor:
Sahandi, Parviz
Publikováno v:
Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 116, 148 (2022)
Let $R=\bigoplus_{\alpha\in\Gamma}R_{\alpha}$ be a graded integral domain. In this paper we study the space of homogeneous preserving semistar operations on $R$. We show if $\star$ is a homogeneous preserving semistar operation on $R$, then $\star_a$
Externí odkaz:
http://arxiv.org/abs/2410.00437
Autor:
Sahandi, Parviz
Let $\Gamma$ be a torsionless commutative cancellative monoid, $R=\bigoplus_{\alpha \in \Gamma}R_{\alpha}$ be a $\Gamma$-graded integral domain. In this note we show that each homogeneous star operation $\star:\mathbf{HF}(R)\to\mathbf{HF}(R)$ of $R$,
Externí odkaz:
http://arxiv.org/abs/2409.19602
Let $\Gamma$ be a torsionless commutative cancellative monoid and $R =\bigoplus_{\alpha \in \Gamma}R_{\alpha}$ be a $\Gamma$-graded integral domain. In this paper, we introduce the notion of graded going-down domains. Among other things, we provide a
Externí odkaz:
http://arxiv.org/abs/2306.16067
We introduce new homological dimensions, namely the Cohen-Macaulay projective, injective and flat dimensions for homologically bounded complexes. Among other things we show that (a) these invariants characterize the Cohen-Macaulay property for local
Externí odkaz:
http://arxiv.org/abs/1904.03586
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Chang, Gyu Whan, Sahandi, Parviz
Let $\Gamma$ be a torsionless commutative cancellative monoid, $R =\bigoplus_{\alpha \in \Gamma}R_{\alpha}$ be a $\Gamma$-graded integral domain, and $H$ be the set of nonzero homogeneous elements of $R$. In this paper, we show that if $Q$ is a maxim
Externí odkaz:
http://arxiv.org/abs/1711.04246
Autor:
Sahandi, Parviz
Let $R=\bigoplus_{\alpha\in\Gamma}R_{\alpha}$ be a graded integral domain and $\star$ be a semistar operation on $R$. For $a\in R$, denote by $C(a)$ the ideal of $R$ generated by homogeneous components of $a$ and for$f=f_0+f_1X+\cdots+f_nX^n\in R[X]$
Externí odkaz:
http://arxiv.org/abs/1610.04845
Autor:
Sahandi, Parviz
Let $R=\bigoplus_{\alpha\in\Gamma}R_{\alpha}$ be a graded integral domain graded by an arbitrary grading torsionless monoid $\Gamma$, and $\star$ be a semistar operation on $R$. In this paper we define and study the graded integral domain analogue of
Externí odkaz:
http://arxiv.org/abs/1307.3861
There are nice relations between graded homological dimensions and ordinary homological dimensions. We study the Gorenstein injective dimension of a complex of graded modules denoted by $^*\Gid$, and derive its properties. In particular we prove the
Externí odkaz:
http://arxiv.org/abs/1306.3049
Autor:
Sahandi, Parviz
In this note we show that an integral domain $D$ of finite $w$-dimension is a quasi-Pr\"{u}fer domain if and only if each overring of $D$ is a $w$-Jaffard domain. Similar characterizations of quasi-Pr\"{u}fer domains are given by replacing $w$-Jaffar
Externí odkaz:
http://arxiv.org/abs/1109.5330