Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Sagar T. Sutar"'
Publikováno v:
AIMS Mathematics, Vol 9, Iss 10, Pp 27058-27079 (2024)
In this study, we proved existence results for nonlinear implicit fractional differential equations with the Caputo version of the Atangana-Baleanu derivative, subject to the boundary and nonlocal initial conditions. The Kuratowski's measure of non-c
Externí odkaz:
https://doaj.org/article/48be9318e54f4ff0bf473ed2478b137f
Autor:
Sagar T. Sutar, Kishor D. Kucche
Publikováno v:
Mathematical Modelling and Analysis, Vol 24, Iss 3 (2019)
We consider a class of nonlinear fractional Volterra integrodifferential equation with fractional integrable impulses and investigate the existence and uniqueness results in the Bielecki’s normed Banach spaces. Further, Bielecki-Ulam type stabiliti
Externí odkaz:
https://doaj.org/article/7c1bc07a5aec4a7da4d3ccfaf8e785e5
Autor:
Kishor D. Kucche, Sagar T. Sutar
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 36, Iss 4 (2018)
We establish existence and uniqueness results for fractional order delay differential equations. It is proved that successive approximation method can also be successfully applied to study Ulam--Hyers stability, generalized Ulam--Hyers stability, Ula
Externí odkaz:
https://doaj.org/article/b80736b5d0ea4227a393657fae753d76
Autor:
Sagar T. Sutar, Kishor D. Kucche
Publikováno v:
Rendiconti del Circolo Matematico di Palermo Series 2
In the current paper, we consider multi-derivative nonlinear fractional differential equations involving Atangana-Baleanu fractional derivative. We investigate the fundamental results about the existence, uniqueness, boundedness and dependence of the
Analysis of Nonlinear Fractional Differential Equations Involving Atangana-Baleanu-Caputo Derivative
Autor:
Sagar T. Sutar, Kishor D. Kucche
In the present paper, we determine estimations on Atangana-Baleanu-Caputo fractional derivative at the extreme points. With the assistance of these estimations, we derive comparison results. Peano’s type existence results are established for nonlin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::614b8b473bcfcdf960b0b6dc718f1776
Autor:
Sagar T. Sutar, Kishor D. Kucche
In this paper, we develop the theory of nonlinear hybrid fractional differential equations involving Atangana--Baleanu--Caputo (ABC) fractional derivative. We construct the equivalent fractional integral equation and establish the existence results t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a02bd50c0759d6c6366178a92a812f00
Autor:
Sagar T. Sutar, Kishor D. Kucche
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 36, Iss 4, Pp 55-75 (2018)
We establish existence and uniqueness results for fractional order delay differential equations. It is proved that successive approximation method can also be successfully applied to study Ulam--Hyers stability, generalized Ulam--Hyers stability, Ula
Autor:
Kishor D. Kucche, Sagar T. Sutar
Publikováno v:
Moroccan Journal of Pure and Applied Analysis. 3:36-54
In this paper we are concerned with nonlinear implicit fractional differential equations with initial conditions. We prove the existence and uniqueness results by using modified version of contraction principle. Further, our prime aim is to present v
Autor:
Sagar T. Sutar, Kishor D. Kucche
Publikováno v:
Mathematical Modelling and Analysis, Vol 24, Iss 3 (2019)
Mathematical Modelling and Analysis; Vol 24 No 3 (2019); 457-477
Mathematical Modelling and Analysis; Vol 24 No 3 (2019); 457-477
We consider a class of nonlinear fractional Volterra integrodifferential equation with fractional integrable impulses and investigate the existence and uniqueness results in the Bielecki's normed Banach spaces. Further, Bielecki--Ulam type stabilitie
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f12bda4fb471396bd8b2f0ae0775c843
http://arxiv.org/abs/1811.12087
http://arxiv.org/abs/1811.12087
Autor:
Kishor D. Kucche, Sagar T. Sutar
Publikováno v:
Fractional Differential Calculus. :199-208