Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Saez, Mariel"'
Autor:
Espinal, Maria Fernanda, Sáez, Mariel
In this paper we classify rotationally symmetric conformally flat admissible solitons to the $k$-Yamabe flow, a fully non-linear version of the Yamabe flow. For $n\geq 2k$ we prove existence of complete expanding, steady and shrinking solitons and de
Externí odkaz:
http://arxiv.org/abs/2410.06942
We prove a conjecture by Hoffman, White, and the first author regarding the uniqueness of pitchfork and helicoid translators of the mean curvature flow in $\mathbb{R}^3$. We employ an arc-counting argument motivated by Morse-Rad\'o theory for transla
Externí odkaz:
http://arxiv.org/abs/2310.06980
This work is a survey of the most relevant background material to motivate and understand the construction and classification of translating solutions to mean curvature flow on a family of solvmanifolds. We introduce the mean curvature flow and some
Externí odkaz:
http://arxiv.org/abs/2305.02378
In this paper we obtain a Hadamard type formula for simple eigenvalues and an analog to the Rayleigh-Faber-Krahn inequality for a class of nonlocal eigenvalue problems. Such class of equations include among others, the classical nonlocal problems wit
Externí odkaz:
http://arxiv.org/abs/2208.14979
Autor:
Daskalopoulos, Panagiota, Saez, Mariel
In this paper we study the uniqueness of graphical mean curvature flow. We consider as initial conditions graphs of locally Lipschitz functions and prove that in the one dimensional case solutions are unique without any further assumptions. This resu
Externí odkaz:
http://arxiv.org/abs/2110.12026
Autor:
Gonzalez, Maria del Mar, Saez, Mariel
In this paper we study bounds for the first eigenvalue of the Paneitz operator $P$ and its associated third-order boundary operator $B^3$ on four-manifolds. We restrict to orientable, simply connected, locally confomally flat manifolds that have at m
Externí odkaz:
http://arxiv.org/abs/2102.07873
This paper contains a new proof of the short-time existence for the flow by curvature of a network of curves in the plane. Appearing initially in metallurgy and as a model for the evolution of grain boundaries, this flow was later treated by Brakke \
Externí odkaz:
http://arxiv.org/abs/2101.04302
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Gonzalez, Maria del Mar, Saez, Mariel
The aim of this paper is two-fold: first, we look at the fractional Laplacian and the conformal fractional Laplacian from the general framework of representation theory on symmetric spaces and, second, we construct new boundary operators with good co
Externí odkaz:
http://arxiv.org/abs/1609.09151
Autor:
Sáez, Mariel, Valdinoci, Enrico
In this paper we study smooth solutions to a fractional mean curvature flow equation. We establish a comparison principle and consequences such as uniqueness and finite extinction time for compact solutions. We also establish evolutions equations for
Externí odkaz:
http://arxiv.org/abs/1511.06944