Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Saeed Zakeri"'
Autor:
Carsten Lunde Petersen, Saeed Zakeri
Publikováno v:
Journal of the London Mathematical Society. 106:192-234
Autor:
Carsten Lunde Petersen, Saeed Zakeri
Publikováno v:
Conformal Geometry and Dynamics of the American Mathematical Society. 25:170-178
Let $P: {\mathbb C} \to {\mathbb C}$ be a polynomial map with disconnected filled Julia set $K_P$ and let $z_0$ be a repelling or parabolic periodic point of $P$. We show that if the connected component of $K_P$ containing $z_0$ is non-degenerate, th
Autor:
Saeed Zakeri
Publikováno v:
Journal of Combinatorial Theory, Series A. 184:105518
This note will give an enumeration of n-cycles in the symmetric group S n by their degree (also known as their cyclic descent number) and studies similar counting problems for the conjugacy classes of n-cycles under the action of the rotation subgrou
Autor:
Saeed Zakeri, Carsten Lunde Petersen
Publikováno v:
Advances in Mathematics. 361:106953
We study the combinatorial types of periodic orbits of the standard covering endomorphisms m k ( x ) = k x ( mod Z ) of the circle for integers k ≥ 2 and the frequency with which they occur. For any q-cycle σ in the permutation group S q , we give
Autor:
Saeed Zakeri
This monograph examines rotation sets under the multiplication by d (mod 1) map and their relation to degree d polynomial maps of the complex plane. These sets are higher-degree analogs of the corresponding sets under the angle-doubling map of the ci
Autor:
Saeed Zakeri
Publikováno v:
Rotation Sets and Complex Dynamics ISBN: 9783319788098
Throughout this monograph the following conventions are adopted: The circle is represented as the quotient \({\mathbb T} = {\mathbb R}/{\mathbb Z}\). \(\pi : {\mathbb R} \to {\mathbb T}\) is the canonical projection. Three or more distinct points \(t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::bd1351596169e488e6538977840fd26b
https://doi.org/10.1007/978-3-319-78810-4_1
https://doi.org/10.1007/978-3-319-78810-4_1
Autor:
Saeed Zakeri
Publikováno v:
Rotation Sets and Complex Dynamics ISBN: 9783319788098
In this chapter we establish further properties of (minimal) rotation sets for m d by exploiting the ideas and tools developed in the previous chapters, most notably the deployment theorem. We also study minimal rotation sets under doubling and tripl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::648e097a871b54ea20cf0ed89aec7099
https://doi.org/10.1007/978-3-319-78810-4_4
https://doi.org/10.1007/978-3-319-78810-4_4
Autor:
Saeed Zakeri
Publikováno v:
Rotation Sets and Complex Dynamics ISBN: 9783319788098
The main result of this chapter is that a minimal rotation set for m d is uniquely determined by its rotation number together with an invariant called the “deployment vector” which, roughly speaking, describes how the points of the rotation set a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::195a2f092d221b428d4cb7e2cbb5b56d
https://doi.org/10.1007/978-3-319-78810-4_3
https://doi.org/10.1007/978-3-319-78810-4_3
Autor:
Saeed Zakeri
Publikováno v:
Rotation Sets and Complex Dynamics ISBN: 9783319788098
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a404769fa26600965ac25adc8f033ceb
https://doi.org/10.1007/978-3-319-78810-4_2
https://doi.org/10.1007/978-3-319-78810-4_2
Autor:
Saeed Zakeri
Publikováno v:
Rotation Sets and Complex Dynamics ISBN: 9783319788098
In this chapter we outline how rotation sets occur in the dynamical study of complex polynomial maps. Special attention is paid to the relation with the dynamics of complex quadratic and cubic polynomials. This link provides a geometric realization o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fd0451c7b6d388dfd2840f376ca8befd
https://doi.org/10.1007/978-3-319-78810-4_5
https://doi.org/10.1007/978-3-319-78810-4_5