Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Sadykov, Nurlan M."'
Autor:
Korepanov, Igor G., Sadykov, Nurlan M.
Hexagon relations are combinatorial or algebraic realizations of four-dimensional Pachner moves. We introduce some simple set-theoretic hexagon relations and then `quantize' them using what we call `polynomial hexagon cohomologies'. Based on this, to
Externí odkaz:
http://arxiv.org/abs/1707.02847
Autor:
Sadykov, Nurlan M.
All solutions of the set-theoretic constant tetrahedron equation with two colors are found, and some of their properties are analyzed. The list includes 406 solutions - we call them R-operators, - most of which are degenerate (non-bijective). Then, w
Externí odkaz:
http://arxiv.org/abs/1504.03314
Autor:
Korepanov, Igor G., Sadykov, Nurlan M.
Publikováno v:
SIGMA 9 (2013), 053, 19 pages
We consider relations in Grassmann algebra corresponding to the four-dimensional Pachner move 3-3, assuming that there is just one Grassmann variable on each 3-face, and a 4-simplex weight is a Grassmann-Gaussian exponent depending on these variables
Externí odkaz:
http://arxiv.org/abs/1305.3246
Autor:
Korepanov, Igor G., Sadykov, Nurlan M.
Publikováno v:
SIGMA 9 (2013), 030, 16 pages
We construct vast families of orthogonal operators obeying pentagon relation in a direct sum of three n-dimensional vector spaces. As a consequence, we obtain pentagon relations in Grassmann algebras, making a far reaching generalization of exotic Re
Externí odkaz:
http://arxiv.org/abs/1212.4462
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.