Zobrazeno 1 - 10
of 80
pro vyhledávání: '"Sadr, A. Vafaei."'
Machine Learning (ML) algorithms are becoming popular in cosmology for extracting valuable information from cosmological data. In this paper, we evaluate the performance of a Convolutional Neural Network (CNN) trained on matter density snapshots to d
Externí odkaz:
http://arxiv.org/abs/2308.03517
Autor:
Hartley, P., Bonaldi, A., Braun, R., Aditya, J. N. H. S., Aicardi, S., Alegre, L., Chakraborty, A., Chen, X., Choudhuri, S., Clarke, A. O., Coles, J., Collinson, J. S., Cornu, D., Darriba, L., Veneri, M. Delli, Forbrich, J., Fraga, B., Galan, A., Garrido, J., Gubanov, F., Håkansson, H., Hardcastle, M. J., Heneka, C., Herranz, D., Hess, K. M., Jagannath, M., Jaiswal, S., Jurek, R. J., Korber, D., Kitaeff, S., Kleiner, D., Lao, B., Lu, X., Mazumder, A., Moldón, J., Mondal, R., Ni, S., Önnheim, M., Parra, M., Patra, N., Peel, A., Salomé, P., Sánchez-Expósito, S., Sargent, M., Semelin, B., Serra, P., Shaw, A. K., Shen, A. X., Sjöberg, A., Smith, L., Soroka, A., Stolyarov, V., Tolley, E., Toribio, M. C., van der Hulst, J. M., Sadr, A. Vafaei, Verdes-Montenegro, L., Westmeier, T., Yu, K., Yu, L., Zhang, L., Zhang, X., Zhang, Y., Alberdi, A., Ashdown, M., Bom, C. R., Brüggen, M., Cannon, J., Chen, R., Combes, F., Conway, J., Courbin, F., Ding, J., Fourestey, G., Freundlich, J., Gao, L., Gheller, C., Guo, Q., Gustavsson, E., Jirstrand, M., Jones, M. G., Józsa, G., Kamphuis, P., Kneib, J. -P., Lindqvist, M., Liu, B., Liu, Y., Mao, Y., Marchal, A., Márquez, I., Meshcheryakov, A., Olberg, M., Oozeer, N., Pandey-Pommier, M., Pei, W., Peng, B., Sabater, J., Sorgho, A., Starck, J. L., Tasse, C., Wang, A., Wang, Y., Xi, H., Yang, X., Zhang, H., Zhang, J., Zhao, M., Zuo, S.
The Square Kilometre Array Observatory (SKAO) will explore the radio sky to new depths in order to conduct transformational science. SKAO data products made available to astronomers will be correspondingly large and complex, requiring the application
Externí odkaz:
http://arxiv.org/abs/2303.07943
According to WHO[1], since the 1970s, diagnosis of melanoma skin cancer has been more frequent. However, if detected early, the 5-year survival rate for melanoma can increase to 99 percent. In this regard, skin lesion segmentation can be pivotal in m
Externí odkaz:
http://arxiv.org/abs/2210.16399
Anomaly detection algorithms are typically applied to static, unchanging, data features hand-crafted by the user. But how does a user systematically craft good features for anomalies that have never been seen? Here we couple deep learning with active
Externí odkaz:
http://arxiv.org/abs/2210.16334
Autor:
Homeyer, André, Geißler, Christian, Schwen, Lars Ole, Zakrzewski, Falk, Evans, Theodore, Strohmenger, Klaus, Westphal, Max, Bülow, Roman David, Kargl, Michaela, Karjauv, Aray, Munné-Bertran, Isidre, Retzlaff, Carl Orge, Romero-López, Adrià, Sołtysiński, Tomasz, Plass, Markus, Carvalho, Rita, Steinbach, Peter, Lan, Yu-Chia, Bouteldja, Nassim, Haber, David, Rojas-Carulla, Mateo, Sadr, Alireza Vafaei, Kraft, Matthias, Krüger, Daniel, Fick, Rutger, Lang, Tobias, Boor, Peter, Müller, Heimo, Hufnagl, Peter, Zerbe, Norman
Publikováno v:
Mod Pathol (2022)
Artificial intelligence (AI) solutions that automatically extract information from digital histology images have shown great promise for improving pathological diagnosis. Prior to routine use, it is important to evaluate their predictive performance
Externí odkaz:
http://arxiv.org/abs/2204.14226
Autor:
Hejazian, Seyyed Sina, Sadr, Alireza Vafaei, Shahjouei, Shima, Vemuri, Ajith, Shouhao, Zhou, Abedi, Vida, Zand, Ramin
Publikováno v:
In Journal of Stroke and Cerebrovascular Diseases December 2024 33(12)
Publikováno v:
In Journal of Critical Care October 2024 83
Studying the cosmological sources at their cosmological rest-frames is crucial to track the cosmic history and properties of compact objects. In view of the increasing data volume of existing and upcoming telescopes/detectors, we here construct a 1--
Externí odkaz:
http://arxiv.org/abs/2201.03393
Autor:
Jain, Ashokkumar, Farooq, Umar, Ghahramani, Nasrollah, Daoud, Deborah, Swartz, Eileen, Hamilton, Christopher, Sadr, Alireza Vafaei, Butler, Thomas
Publikováno v:
In Transplantation Proceedings July-August 2024 56(6):1319-1326
Autor:
Crichton, Devin, Aich, Moumita, Amara, Adam, Bandura, Kevin, Bassett, Bruce A., Bengaly, Carlos, Berner, Pascale, Bhatporia, Shruti, Bucher, Martin, Chang, Tzu-Ching, Chiang, H. Cynthia, Cliche, Jean-Francois, Crichton, Carolyn, Dave, Romeel, de Villiers, Dirk I. L., Dobbs, Matt A., Ewall-Wice, Aaron M., Eyono, Scott, Finlay, Christopher, Gaddam, Sindhu, Ganga, Ken, Gayley, Kevin G., Gerodias, Kit, Gibbon, Tim, Gumba, Austin, Gupta, Neeraj, Harris, Maile, Heilgendorf, Heiko, Hilton, Matt, Hincks, Adam D., Hitz, Pascal, Jalilvand, Mona, Julie, Roufurd, Kader, Zahra, Kania, Joseph, Karagiannis, Dionysios, Karastergiou, Aris, Kesebonye, Kabelo, Kittiwisit, Piyanat, Kneib, Jean-Paul, Knowles, Kenda, Kuhn, Emily R., Kunz, Martin, Maartens, Roy, MacKay, Vincent, MacPherson, Stuart, Monstein, Christian, Moodley, Kavilan, Mugundhan, V., Naidoo, Warren, Naidu, Arun, Newburgh, Laura B., Nistane, Viraj, Di Nitto, Amanda, Ölçek, Deniz, Pan, Xinyu, Paul, Sourabh, Peterson, Jeffrey B., Pieters, Elizabeth, Pieterse, Carla, Pillay, Aritha, Polish, Anna R., Randrianjanahary, Liantsoa, Refregier, Alexandre, Renard, Andre, Retana-Montenegro, Edwin, Rout, Ian H., Russeeawon, Cyndie, Sadr, Alireza Vafaei, Saliwanchik, Benjamin R. B., Sampath, Ajith, Sanghavi, Pranav, Santos, Mario G., Sengate, Onkabetse, Shaw, J. Richard, Sievers, Jonathan L., Smirnov, Oleg M., Smith, Kendrick M., Sob, Ulrich Armel Mbou, Srianand, Raghunathan, Stronkhorst, Pieter, Sunder, Dhaneshwar D., Tartakovsky, Simon, Taylor, Russ, Timbie, Peter, Tolley, Emma E., Townsend, Junaid, Tyndall, Will, Ungerer, Cornelius, van Dyk, Jacques, van Vuuren, Gary, Vanderlinde, Keith, Viant, Thierry, Walters, Anthony, Wang, Jingying, Weltman, Amanda, Woudt, Patrick, Wulf, Dallas, Zavyalov, Anatoly, Zhang, Zheng
Publikováno v:
J. of Astronomical Telescopes, Instruments, and Systems, 8(1), 011019 (2022)
The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) is a radio interferometer array currently in development, with an initial 256-element array to be deployed at the South African Radio Astronomy Observatory (SARAO) Square Kilometer Arra
Externí odkaz:
http://arxiv.org/abs/2109.13755