Zobrazeno 1 - 10
of 122
pro vyhledávání: '"Sadek Gala"'
Publikováno v:
AIMS Mathematics, Vol 8, Iss 9, Pp 21208-21220 (2023)
This paper is devoted to investigating regularity criteria for the 3D micropolar fluid equations in terms of pressure in weak Lebesgue space. More precisely, we prove that the weak solution is regular on $ (0, T] $ provided that either the norm $ \le
Externí odkaz:
https://doaj.org/article/d9c310d3be874353b10a608752eff3b5
Publikováno v:
Rendiconti di Matematica e delle Sue Applicazioni, Vol 43, Iss 3-4, Pp 165-171 (2022)
This work focuses on the 3D incompressible magnetohydrodynamic (MHD) equations with mixed pressure-velocity-magnetic field in view of Lorentz spaces. Our main result shows the weak solution is regular, provided that π e−|x| 2 + |u| + |b| θ
Externí odkaz:
https://doaj.org/article/f9e2eaa281c74789a07377c303e35a4f
Publikováno v:
Mathematical Modelling and Analysis, Vol 28, Iss 2 (2023)
In this paper, we establish a regularity criterion for micropolar fluid flows in terms of the one component of the velocity in critical Morrey-Campanato space. More precisely, we show that if where then the weak solution (u,w) is regular.
Externí odkaz:
https://doaj.org/article/70d6b0c279de4da3bb2aa79732eff7e6
Publikováno v:
AIMS Mathematics, Vol 5, Iss 1, Pp 359-375 (2020)
The aim of this paper is to establish the regularity criterion of weak solutions to the 3D micropolar fluid equations by one directional derivative of the pressure in anisotropic Lebesgue spaces. We improve the regularity criterion for weak solutions
Externí odkaz:
https://doaj.org/article/75b44bee50aa4cc6aa4329134796faae
Publikováno v:
AIMS Mathematics, Vol 2, Iss 3, Pp 451-457 (2017)
In this note, a regularity criterion of weaksolutions to the 3D-Boussinesq equations with respect to Serrin type condition under the framework of Besov space $\overset{.}{B}_{\infty ,\infty}^{r}$. It is shown that the weak solution $(u,\theta )$ is r
Externí odkaz:
https://doaj.org/article/86e6a90ba24e415785d0f74b28637a69
Publikováno v:
AIMS Mathematics, Vol 2, Iss 2, Pp 336-347 (2017)
In this paper, logarithmically improved regularity criteria for the Boussinesq equations are established under the framework of Besov space $\overset{.}{B}_{\infty ,\infty }^{-r}$. We prove the solution $(u,\theta )$ is smooth up to time $T>0$ provid
Externí odkaz:
https://doaj.org/article/74a372ca79b74338a0fd8a212ae6b74d
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Sadek Gala, Maria Alessandra Ragusa
Publikováno v:
AIMS Mathematics, Vol 2, Iss 1, Pp 16-23 (2016)
In this paper, we will establish a sufficient condition for the regularity criterion to the 3D MHD equation in terms of the derivative of the pressure in one direction. It is shown that if the partial derivative of the pressure $\partial _{3}\pi $ sa
Externí odkaz:
https://doaj.org/article/f929531b538e446d8acebd412471cdba
Autor:
Sadek Gala
Publikováno v:
AIMS Mathematics, Vol 1, Iss 3, Pp 282-287 (2016)
The main result of this work is to study the Liouville type theorem for the stationary Hall-MHD system on $\mathbb{R}^{3}$. Specificaly, we show that if $(u,B)$ is a smooth solutions to Hall-MHD equations satisfying $(u,B) \in L^\frac{9}{2} \mathbb{R
Externí odkaz:
https://doaj.org/article/3b5e86e3f56941ab8519b2eefea3c885
Autor:
Sadek Gala, Maria Alessandra Ragusa
Publikováno v:
Electronic Journal of Differential Equations, Vol 2016, Iss 137,, Pp 1-7 (2016)
This article provides a regularity criterion for the surface quasi-geostrophic equation with supercritical dissipation. This criterion is in terms of the norm of the solution in a Orlicz-Morrey space. The result shows that, if a weak solutions $\t
Externí odkaz:
https://doaj.org/article/84b11c38654a438a84d20d681ca841a3