Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Sacha Krug"'
Publikováno v:
Theoretical Computer Science, 862
Theoretical computer science 862, 81-96 (2021). doi:10.1016/j.tcs.2021.01.022 special issue: "A Fascinating Rainbow of Computation – Honoring Gheorghe Păun on the Occasion of His 70th Birthday / Edited by Lila Kari, Grzegorz Rozenberg, Arto Salomaa, Ion Petre"
Theoretical computer science 862, 81-96 (2021). doi:10.1016/j.tcs.2021.01.022 special issue: "A Fascinating Rainbow of Computation – Honoring Gheorghe Păun on the Occasion of His 70th Birthday / Edited by Lila Kari, Grzegorz Rozenberg, Arto Salomaa, Ion Petre"
A dominating set S of a graph is a set of vertices such that each vertex is in S or has a neighbor in S. The goal of the dominating set problem is to find such a set of minimum cardinality. In the online setting, the graph is revealed vertex by verte
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b80a7329a105324e8662af86085cd318
https://hdl.handle.net/20.500.11850/471612
https://hdl.handle.net/20.500.11850/471612
Autor:
Richard Královič, Sacha Krug, Tobias Mömke, Stefan Dobrev, Rastislav Královič, Dennis Komm, Jeff Edmonds
Publikováno v:
Theoretical Computer Science, 689
We study the advice complexity of an online version of the set cover problem. The goal is to quantify the information that online algorithms for this problem need to be supplied with to compute high-quality solutions and to overcome the drawback of n
Autor:
Sacha Krug
Publikováno v:
RAIRO - Theoretical Informatics and Applications. 47:293-314
The traveling salesman problem (TSP) is one of the most fundamental optimization problems. We consider the β-metric traveling salesman problem (Δβ-TSP), i.e., the TSP restricted to graphs satisfying the β-triangle inequality c({v,w}) ≤ β(c({v,
Publikováno v:
Lecture Notes in Computer Science, 9198
Computing and Combinatorics
Lecture Notes in Computer Science ISBN: 9783319213972
COCOON
Computing and Combinatorics
Lecture Notes in Computer Science ISBN: 9783319213972
COCOON
Lecture Notes in Computer Science, 9198
ISSN:0302-9743
ISSN:1611-3349
Computing and Combinatorics
ISBN:978-3-319-21397-2
ISBN:978-3-319-21398-9
ISSN:0302-9743
ISSN:1611-3349
Computing and Combinatorics
ISBN:978-3-319-21397-2
ISBN:978-3-319-21398-9
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::afd87ed7786d9d84fd728e581bb033ac
Autor:
Sacha Krug, Dennis Komm, Juraj Hromkovič, Jasmin Smula, Andreas Sprock, Hans-Joachim Böckenhauer
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783642387678
COCOON
COCOON
The advice complexity of an online problem describes the additional information both necessary and sufficient for online algorithms to compute solutions of a certain quality. In this model, an oracle inspects the input before it is processed by an on
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::01c7c7425abe28e8c9dec0ff79b2f0e0
https://doi.org/10.1007/978-3-642-38768-5_44
https://doi.org/10.1007/978-3-642-38768-5_44
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783642387678
COCOON
COCOON
In an L(2,1)-coloring of a graph, the vertices are colored with colors from an ordered set such that neighboring vertices get colors that have distance at least 2 and vertices at distance 2 in the graph get different colors. We consider the problem o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6b6b171d35eb96876f7240c750beea7a
https://doi.org/10.1007/978-3-642-38768-5_7
https://doi.org/10.1007/978-3-642-38768-5_7
Autor:
Sacha Krug
Publikováno v:
SOFSEM 2012: Theory and Practice of Computer Science ISBN: 9783642276590
SOFSEM
SOFSEM
The traveling salesman problem (TSP) is one of the most fundamental optimization problems. We consider the β -metric traveling salesman problem (Δβ -TSP), i.e., the TSP restricted to graphs satisfying the β -triangle inequality c ({v ,w })≤β (
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6ff1b759f5e4876597dc8c0ac83dbd49
https://doi.org/10.1007/978-3-642-27660-6_29
https://doi.org/10.1007/978-3-642-27660-6_29