Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Saadatmand, S. N."'
Autor:
Agrawal, Anjali A., Job, Joshua, Wilson, Tyler L., Saadatmand, S. N., Hodson, Mark J., Mutus, Josh Y., Caesura, Athena, Johnson, Peter D., Elenewski, Justin E., Morrell, Kaitlyn J., Kemper, Alexander F.
Understanding the physics of strongly correlated materials is one of the grand challenge problems for physics today. A large class of scientifically interesting materials, from high-$T_c$ superconductors to spin liquids, involve medium to strong corr
Externí odkaz:
http://arxiv.org/abs/2406.06511
Autor:
Saadatmand, S. N., Wilson, Tyler L., Field, Mark, Vijayan, Madhav Krishnan, Le, Thinh P., Ruh, Jannis, Maan, Arshpreet Singh, Moflic, Ioana, Caesura, Athena, Paler, Alexandru, Hodson, Mark J., Devitt, Simon J., Mutus, Josh Y.
The development of fault-tolerant quantum computers (FTQCs) is gaining increased attention within the quantum computing community. Like their digital counterparts, FTQCs, equipped with error correction and large qubit numbers, promise to solve some o
Externí odkaz:
http://arxiv.org/abs/2406.06015
Publikováno v:
Physical Review A 107, 053702 (2023)
Recently it has been shown that it is possible for a laser to produce a stationary beam with a coherence (quantified as the mean photon number at spectral peak) which scales as the fourth power of the mean number of excitations stored within the lase
Externí odkaz:
http://arxiv.org/abs/2208.14082
Publikováno v:
Physical Review Letters 130, 183602 (2023)
The Heisenberg limit to laser coherence $\mathfrak{C}$ -- the number of photons in the maximally populated mode of the laser beam -- is the fourth power of the number of excitations inside the laser. We generalize the previous proof of this upper bou
Externí odkaz:
http://arxiv.org/abs/2208.14081
Publikováno v:
Nat. Phys. (2020)
To quantify quantum optical coherence requires both the particle- and wave-natures of light. For an ideal laser beam [1,2,3], it can be thought of roughly as the number of photons emitted consecutively into the beam with the same phase. This number,
Externí odkaz:
http://arxiv.org/abs/2009.05296
Autor:
Saadatmand, S. N.
Publikováno v:
J. Phys.: Condens. Matter 32 355901 (2020)
Understanding extreme non-locality in many-body quantum systems can help resolve questions in thermostatistics and laser physics. The existence of symmetry selection rules for Hamiltonians with non-decaying terms on infinite-size lattices can lead to
Externí odkaz:
http://arxiv.org/abs/1910.10370
Publikováno v:
Phys. Rev. E 101, 060101 (2020)
The standard formulation of thermostatistics, being based on the Boltzmann-Gibbs distribution and logarithmic Shannon entropy, describes idealized uncorrelated systems with extensive energies and short-range interactions. In this letter, we use the f
Externí odkaz:
http://arxiv.org/abs/1907.01855
Publikováno v:
Phys. Rev. B 97, 155116 (2018)
Obtaining quantitative ground-state behavior for geometrically-frustrated quantum magnets with long-range interactions is challenging for numerical methods. Here, we demonstrate that the ground states of these systems on two-dimensional lattices can
Externí odkaz:
http://arxiv.org/abs/1802.00422
Autor:
Saadatmand, S. N., McCulloch, I. P.
Publikováno v:
Phys. Rev. B 96, 075117 (2017)
We present new numerical tools to analyze symmetry-broken phases in the context of $SU(2)$-symmetric translation-invariant matrix product states (MPS) and density-matrix renormalization-group (DMRG) methods for infinite cylinders, and determine the p
Externí odkaz:
http://arxiv.org/abs/1704.03418
Autor:
Saadatmand, S. N., McCulloch, I. P.
Publikováno v:
Phys. Rev. B 94, 121111 (2016)
Using density-matrix renormalization-group calculations for infinite cylinders, we elucidate the properties of the spin-liquid phase of the spin-$\frac{1}{2}$ $J_1$-$J_2$ Heisenberg model on the triangular lattice. We find four distinct ground-states
Externí odkaz:
http://arxiv.org/abs/1606.00334