Zobrazeno 1 - 10
of 30
pro vyhledávání: '"SURESH, VARSHA"'
Self-supervised learning models have revolutionized the field of speech processing. However, the process of fine-tuning these models on downstream tasks requires substantial computational resources, particularly when dealing with multiple speech-proc
Externí odkaz:
http://arxiv.org/abs/2406.14747
Autor:
Suresh, Varsha, Ong, Desmond C.
Publikováno v:
10th International Conference on Affective Computing and Intelligent Interaction (ACII), 2022
Machine learning models automatically learn discriminative features from the data, and are therefore susceptible to learn strongly-correlated biases, such as using protected attributes like gender and race. Most existing bias mitigation approaches ai
Externí odkaz:
http://arxiv.org/abs/2303.04896
Autor:
Suresh, Varsha, Ong, Desmond C.
Fine-grained classification involves dealing with datasets with larger number of classes with subtle differences between them. Guiding the model to focus on differentiating dimensions between these commonly confusable classes is key to improving perf
Externí odkaz:
http://arxiv.org/abs/2109.05427
Autor:
Suresh, Varsha, Ong, Desmond C.
Modern emotion recognition systems are trained to recognize only a small set of emotions, and hence fail to capture the broad spectrum of emotions people experience and express in daily life. In order to engage in more empathetic interactions, future
Externí odkaz:
http://arxiv.org/abs/2108.00194
Facial Expression Recognition is a commercially-important application, but one under-appreciated limitation is that such applications require making predictions on out-of-sample distributions, where target images have different properties from the im
Externí odkaz:
http://arxiv.org/abs/2106.15453
Autor:
Suresh, Varsha, Ooi, Wei Tsang
Change-point detection in a time series aims to discover the time points at which some unknown underlying physical process that generates the time-series data has changed. We found that existing approaches become less accurate when the underlying pro
Externí odkaz:
http://arxiv.org/abs/2007.11985
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Problem Based Learning in Higher Education; 2023, Vol. 11 Issue 3, p44-60, 17p
Publikováno v:
In Chest October 2021 160(4) Supplement:A1709-A1709
Publikováno v:
ACM International Conference Proceeding Series; 2/14/2019, p1-4, 4p