Zobrazeno 1 - 10
of 27
pro vyhledávání: '"SUPERÁLGEBRAS DE LIE"'
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We use induction from parabolic subalgebras with infinite-dimensional Levi factor to construct new families of irreducible representations for arbitrary affine Kac-Moody algebras. Our first construction defines a functor from the category of Whittake
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Motivated by the recent progress towards classification of simple finite-dimensional Lie algebras over an algebraically closed field of characteristic 2, we investigate such 15-dimensional Skryabin algebras.
Autor:
Ivan P. Shestakov, V. M. Petrogradsky
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
The Grigorchuk and Gupta-Sidki groups play fundamental role in modern group theory. They are natural examples of self-similar finitely generated periodic groups. The first author constructed their analogue in case of restricted Lie algebras of charac
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
This paper is the second part of paper (Grishkov and Guerreiro in Sao Paulo J Math Sci v4(1):93–107, 2010) about simple 7-dimensional Lie algebras over an algebraically closed field k of characteristic two. In this paper we prove that all simple 7-
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We construct a new family of irreducible modules over any basic classical affine Kac-Moody Lie superalgebra which are induced from modules over the Heisenberg subalgebra. We also obtain irreducible deformations of these modules for the quantum affine
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a431b793895a4c7aeff2cbc25be9842a
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::de651daf347c4d62bf25f5943db76192
Autor:
Vyacheslav Futorny, Libor Křižka
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In the present paper we describe a new class of Gelfand–Tsetlin modules for an arbitrary complex simple finite-dimensional Lie algebra g and give their geometric realization as the space of ‘δ-functions’ on the flag manifold G / B supported at
Autor:
V. M. Petrogradsky, Ivan P. Shestakov
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
To an arbitrary Lie superalgebra L we associate its Jordan double \({\mathcal Jor}(L)\), which is a Jordan superalgebra. This notion was introduced by the second author before (Shestakov in Sib Adv Math 9(2):83–99, 1999). Now we study further appli
Autor:
Zhang, Jian
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3056::92d724fa0af293ecf2e931c2d524e88b
Autor:
Cristian Ortiz, James Waldron
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In this work we introduce the category of multiplicative sections of an LA -groupoid. We prove that this category carries a natural strict Lie 2-algebra structure, which is Morita invariant. As applications, we study the algebraic structure underlyin