Zobrazeno 1 - 10
of 103
pro vyhledávání: '"SUKSUMRAN, TEERAPONG"'
Autor:
Suksumran, Teerapong
Publikováno v:
Mediterranean Journal of Mathematics 19, no. 4 (2022), Article 148
Using Klein's approach, geometry can be studied in terms of a space of points and a group of transformations of that space. This allows us to apply algebraic tools in studying geometry of mathematical structures. In this article, we follow Klein's ap
Externí odkaz:
http://arxiv.org/abs/2109.02105
Autor:
WATTANAPAN, Jaturon1,2, SUKSUMRAN, Teerapong3 teerapong.suksumran@cmu.ac.th
Publikováno v:
Turkish Journal of Mathematics. 2024, Vol. 48 Issue 4, p634-644. 11p.
Publikováno v:
Algebraic structures and their applications, 2021
In this article, we study connections between components of the Cayley graph $\mathrm{Cay}(G,A)$, where $A$ is an arbitrary subset of a group $G$, and cosets of the subgroup of $G$ generated by $A$. In particular, we show how to construct generating
Externí odkaz:
http://arxiv.org/abs/2009.05922
Autor:
Maungchang, Rasimate, Khachorncharoenkul, Prathomjit, Prathom, Kiattisak, Suksumran, Teerapong
Publikováno v:
Heliyon, 7(5), 2021, pp. e07049
In this work, we explore edge direction, transitivity, and connectedness of Cayley graphs of gyrogroups. More specifically, we find conditions for a Cayley graph of a gyrogroup to be undirected, transitive, and connected. We also show a relationship
Externí odkaz:
http://arxiv.org/abs/2008.03267
This article studies connections between group actions and their corresponding vector spaces. Given an action of a group $G$ on a nonempty set $X$, we examine the space $L(X)$ of scalar-valued functions on $X$ and its fixed subspace: $$ L^G(X) = \{f\
Externí odkaz:
http://arxiv.org/abs/2006.02653
Autor:
Suksumran, Teerapong
The space of $n$-dimensional relativistic velocities normalized to $c = 1$, $$\mathbb{B} = \{\mathbf{v}\in\mathbb{R}^n\colon \|\mathbf{v}\| < 1\},$$ is naturally associated with Einstein velocity addition $\oplus_E$, which induces the rapidity metric
Externí odkaz:
http://arxiv.org/abs/1905.01496
The open unit ball $\mathbb{B} = \{\mathbf{v}\in\mathbb{R}^n\colon\|\mathbf{v}\|<1\}$ is endowed with M\"{o}bius addition $\oplus_M$ defined by $$\mathbf{u}\oplus_M\mathbf{v} = \dfrac{(1 + 2\langle\mathbf{u},\mathbf{v}\rangle + \|\mathbf{v}\|^2)\math
Externí odkaz:
http://arxiv.org/abs/1902.05003
Publikováno v:
Carpathian Journal of Mathematics, 2022 Jan 01. 38(1), 231-248.
Externí odkaz:
https://www.jstor.org/stable/27082133
Autor:
Suksumran, Teerapong
In this article, we indicate that the open unit ball in $n$-dimensional Euclidean space $\mathbb{R}^n$ admits norm-like functions compatible with the Poincar\'e and Beltrami$-$Klein metrics. This leads to the notion of a normed gyrogroup, similar to
Externí odkaz:
http://arxiv.org/abs/1810.10491
Autor:
Suksumran, Teerapong
Publikováno v:
Analysis and Geometry in Metric Spaces, 7(2019), 15-21
Let $G$ be a group and let $S$ be a generating set of $G$. In this article, we introduce a metric $d_C$ on $G$ with respect to $S$, called the cardinal metric. We then compare geometric structures of $(G, d_C)$ and $(G, d_W)$, where $d_W$ denotes the
Externí odkaz:
http://arxiv.org/abs/1810.08762