Zobrazeno 1 - 10
of 1 014
pro vyhledávání: '"SUBRAHMANYAM, K."'
In this paper we study the orbit closure problem for a reductive group $G\subseteq GL(X)$ acting on a finite dimensional vector space $V$ over $\C$. We assume that the center of $GL(X)$ lies within $G$ and acts on $V$ through a fixed non-trivial char
Externí odkaz:
http://arxiv.org/abs/2309.15816
Let $G$ be a connected reductive group acting on a complex vector space $V$ and projective space ${\mathbb P}V$. Let $x\in V$ and ${\cal H}\subseteq {\cal G}$ be the Lie algebra of its stabilizer. Our objective is to understand points $[y]$, and thei
Externí odkaz:
http://arxiv.org/abs/2201.00135
Learning rate, batch size and momentum are three important hyperparameters in the SGD algorithm. It is known from the work of Jastrzebski et al. arXiv:1711.04623 that large batch size training of neural networks yields models which do not generalize
Externí odkaz:
http://arxiv.org/abs/2006.11604
Convolutional neural networks or standard CNNs (StdCNNs) are translation-equivariant models that achieve translation invariance when trained on data augmented with sufficient translations. Recent work on equivariant models for a given group of transf
Externí odkaz:
http://arxiv.org/abs/2006.04449
Deep learning models are known to be vulnerable not only to input-dependent adversarial attacks but also to input-agnostic or universal adversarial attacks. Dezfooli et al. \cite{Dezfooli17,Dezfooli17anal} construct universal adversarial attack on a
Externí odkaz:
http://arxiv.org/abs/2005.08632
(Non-)robustness of neural networks to small, adversarial pixel-wise perturbations, and as more recently shown, to even random spatial transformations (e.g., translations, rotations) entreats both theoretical and empirical understanding. Spatial robu
Externí odkaz:
http://arxiv.org/abs/2002.11318
Let $r < n$ be positive integers and further suppose $r$ and $n$ are coprime. We study the GIT quotient of Schubert varieties $X(w)$ in the Grassmannian $G_{r,n}$, admitting semistable points for the action of $T$ with respect to the $T$-linearized l
Externí odkaz:
http://arxiv.org/abs/1912.08618
We study the GIT quotient of the minimal Schubert variety in the Grassmannian admitting semistable points for the action of maximal torus $T$, with respect to the $T$-linearized line bundle ${\cal L}(n \omega_r)$ and show that this is smooth when $gc
Externí odkaz:
http://arxiv.org/abs/1901.01043
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.