Zobrazeno 1 - 10
of 59
pro vyhledávání: '"SU, GUANGXIANG"'
Let $(M,g^{TM})$ be an odd dimensional ($\dim M\geq 3$) connected oriented noncompact complete spin Riemannian manifold. Let $k^{TM}$ be the associated scalar curvature. Let $f:M\to S^{\dim M}(1)$ be a smooth area decreasing map which is locally cons
Externí odkaz:
http://arxiv.org/abs/2404.18153
Autor:
Su, Guangxiang, Yi, Zelin
In this paper, we prove that the foliated Rosenberg index of a possibly noncompactly enlargeable, spin foliation is nonzero. It generalizes our previous result. The difficulty brought by the noncompactness is reflected in the infinite dimensionality
Externí odkaz:
http://arxiv.org/abs/2307.12662
For a compact spin Riemannian manifold $(M,g^{TM})$ of dimension $n$ such that the associated scalar curvature $k^{TM}$ verifies that $k^{TM}\geqslant n(n-1)$, Llarull's rigidity theorem says that any area-decreasing smooth map $f$ from $M$ to the un
Externí odkaz:
http://arxiv.org/abs/2306.06906
Autor:
Su, Guangxiang, Yi, Zelin
Let $M$ be a spin manifold, the Dirac operator with coefficient in the universal flat Hilbert $C^\ast \pi_1(M)$-module determines a "Rosenberg index element" which, according to B.Hanke and T.Schick, subsumes the enlargeablility obstruction of positi
Externí odkaz:
http://arxiv.org/abs/2110.08566
Autor:
Su, Guangxiang, Wang, Xiangsheng
Let $(M,F)$ be a connected (not necessarily compact) foliated manifold carrying a complete Riemannian metric $g^{TM}$. We generalize Gromov's $\mathrm{K}$-cowaist using the coverings of $M$, as well as defining a closely related concept called $\wide
Externí odkaz:
http://arxiv.org/abs/2107.08354
Publikováno v:
J. reine angew. Math. 790 (2022), 85-113
Let $(M,g^{TM})$ be a noncompact complete Riemannian manifold of dimension $n$, and let $F\subseteq TM$ be an integrable subbundle of $TM$. Let $g^F=g^{TM}|_{F}$ be the restricted metric on $F$ and let $k^F$ be the associated leafwise scalar curvatur
Externí odkaz:
http://arxiv.org/abs/2104.03472
Autor:
Su, Guangxiang, Zhang, Weiping
Publikováno v:
Advances in Mathematics, 410 (2022), 108699, 17 pages
Let $(M,g^{TM})$ be a noncompact (not necessarily complete) enlargeable Riemannian manifold in the sense of Gromov-Lawson and $F$ an integrable subbundle of $T M$ . Let $k^F$ be the leafwise scalar curvature associated to $g^F=g^{TM}|_F$. We show tha
Externí odkaz:
http://arxiv.org/abs/1905.12919
Autor:
Su, Guangxiang
In this paper we prove the Cheeger-M\"{u}ller theorem for $L^2$-analytic torsion form under the assumption that there exists a fiberwise Morse function and the Novikov-Shubin invariant is positive.
Comment: submitted to a journal
Comment: submitted to a journal
Externí odkaz:
http://arxiv.org/abs/1801.08824
Autor:
Su, Guangxiang
In this paper we consider Llarull's theorem in the foliation case and get a lower bound of the Lipschitz constant of the map $M\to S^n$ in the foliation case under the spin condition.
Externí odkaz:
http://arxiv.org/abs/1801.06967
Autor:
Su, Guangxiang, Zhang, Weiping
Publikováno v:
In Advances in Mathematics 3 December 2022 410 Part A