Zobrazeno 1 - 10
of 689
pro vyhledávání: '"STIEFELHAGEN, RAINER"'
Mitigating Label Noise using Prompt-Based Hyperbolic Meta-Learning in Open-Set Domain Generalization
Autor:
Peng, Kunyu, Wen, Di, Saquib, Sarfraz M., Chen, Yufan, Zheng, Junwei, Schneider, David, Yang, Kailun, Wu, Jiamin, Roitberg, Alina, Stiefelhagen, Rainer
Open-Set Domain Generalization (OSDG) is a challenging task requiring models to accurately predict familiar categories while minimizing confidence for unknown categories to effectively reject them in unseen domains. While the OSDG field has seen cons
Externí odkaz:
http://arxiv.org/abs/2412.18342
Autor:
Liu, Ruiping, Zhang, Jiaming, Schön, Angela, Müller, Karin, Zheng, Junwei, Yang, Kailun, Gerling, Kathrin, Stiefelhagen, Rainer
Assistive technology can be leveraged by blind people when searching for objects in their daily lives. We created ObjectFinder, an open-vocabulary interactive object-search prototype, which combines object detection with scene description and navigat
Externí odkaz:
http://arxiv.org/abs/2412.03118
Wide-FoV cameras, like fisheye and panoramic setups, are essential for broader perception but introduce significant distortions in 180{\deg} and 360{\deg} images, complicating dense prediction tasks. For instance, existing MAMBA models lacking distor
Externí odkaz:
http://arxiv.org/abs/2411.16481
3D visual grounding (3DVG) aims to locate objects in a 3D scene with natural language descriptions. Supervised methods have achieved decent accuracy, but have a closed vocabulary and limited language understanding ability. Zero-shot methods mostly ut
Externí odkaz:
http://arxiv.org/abs/2411.14594
Autor:
Schneider, David, Reiß, Simon, Kugler, Marco, Jaus, Alexander, Peng, Kunyu, Sutschet, Susanne, Sarfraz, M. Saquib, Matthiesen, Sven, Stiefelhagen, Rainer
Exploring the intricate dynamics between muscular and skeletal structures is pivotal for understanding human motion. This domain presents substantial challenges, primarily attributed to the intensive resources required for acquiring ground truth musc
Externí odkaz:
http://arxiv.org/abs/2411.00128
Autor:
Jaus, Alexander, Seibold, Constantin, Reiß, Simon, Marinov, Zdravko, Li, Keyi, Ye, Zeling, Krieg, Stefan, Kleesiek, Jens, Stiefelhagen, Rainer
We present Connected-Component~(CC)-Metrics, a novel semantic segmentation evaluation protocol, targeted to align existing semantic segmentation metrics to a multi-instance detection scenario in which each connected component matters. We motivate thi
Externí odkaz:
http://arxiv.org/abs/2410.18684
Autor:
Schneider, David, Sajadmanesh, Sina, Sehwag, Vikash, Sarfraz, Saquib, Stiefelhagen, Rainer, Lyu, Lingjuan, Sharma, Vivek
Privacy-preserving computer vision is an important emerging problem in machine learning and artificial intelligence. Prevalent methods tackling this problem use differential privacy (DP) or obfuscation techniques to protect the privacy of individuals
Externí odkaz:
http://arxiv.org/abs/2410.17098
Autor:
Heinemann, Lena, Jaus, Alexander, Marinov, Zdravko, Kim, Moon, Spadea, Maria Francesca, Kleesiek, Jens, Stiefelhagen, Rainer
Within this work, we introduce LIMIS: The first purely language-based interactive medical image segmentation model. We achieve this by adapting Grounded SAM to the medical domain and designing a language-based model interaction strategy that allows r
Externí odkaz:
http://arxiv.org/abs/2410.16939
Autor:
Peng, Kunyu, Wen, Di, Yang, Kailun, Luo, Ao, Chen, Yufan, Fu, Jia, Sarfraz, M. Saquib, Roitberg, Alina, Stiefelhagen, Rainer
In Open-Set Domain Generalization (OSDG), the model is exposed to both new variations of data appearance (domains) and open-set conditions, where both known and novel categories are present at test time. The challenges of this task arise from the dua
Externí odkaz:
http://arxiv.org/abs/2409.17555
Autor:
Fervers, Florian, Bullinger, Sebastian, Bodensteiner, Christoph, Arens, Michael, Stiefelhagen, Rainer
This work presents a method that is able to predict the geolocation of a street-view photo taken in the wild within a state-sized search region by matching against a database of aerial reference imagery. We partition the search region into geographic
Externí odkaz:
http://arxiv.org/abs/2409.16763