Zobrazeno 1 - 10
of 900
pro vyhledávání: '"SMITT, P."'
Autor:
Magistri, Federico, Läbe, Thomas, Marks, Elias, Nagulavancha, Sumanth, Pan, Yue, Smitt, Claus, Klingbeil, Lasse, Halstead, Michael, Kuhlmann, Heiner, McCool, Chris, Behley, Jens, Stachniss, Cyrill
As the world population is expected to reach 10 billion by 2050, our agricultural production system needs to double its productivity despite a decline of human workforce in the agricultural sector. Autonomous robotic systems are one promising pathway
Externí odkaz:
http://arxiv.org/abs/2407.13304
Publikováno v:
IEEE Robotics and Automation Letters 2024
In this article, we focus on the critical tasks of plant protection in arable farms, addressing a modern challenge in agriculture: integrating ecological considerations into the operational strategy of precision weeding robots like \bbot. This articl
Externí odkaz:
http://arxiv.org/abs/2405.09118
Autor:
Smitt, Claus, Halstead, Michael, Zimmer, Patrick, Läbe, Thomas, Guclu, Esra, Stachniss, Cyrill, McCool, Chris
Precise scene understanding is key for most robot monitoring and intervention tasks in agriculture. In this work we present PAg-NeRF which is a novel NeRF-based system that enables 3D panoptic scene understanding. Our representation is trained using
Externí odkaz:
http://arxiv.org/abs/2309.05339
Autor:
Pan, Yue, Magistri, Federico, Läbe, Thomas, Marks, Elias, Smitt, Claus, McCool, Chris, Behley, Jens, Stachniss, Cyrill
Monitoring plants and fruits at high resolution play a key role in the future of agriculture. Accurate 3D information can pave the way to a diverse number of robotic applications in agriculture ranging from autonomous harvesting to precise yield esti
Externí odkaz:
http://arxiv.org/abs/2303.08923
In agriculture, the majority of vision systems perform still image classification. Yet, recent work has highlighted the potential of spatial and temporal cues as a rich source of information to improve the classification performance. In this paper, w
Externí odkaz:
http://arxiv.org/abs/2206.13406
Modern agricultural applications require knowledge about the position and size of fruits on plants. However, occlusions from leaves typically make obtaining this information difficult. We present a novel viewpoint planning approach that builds up an
Externí odkaz:
http://arxiv.org/abs/2011.00275
We present PATHoBot an autonomous crop surveying and intervention robot for glasshouse environments. The aim of this platform is to autonomously gather high quality data and also estimate key phenotypic parameters. To achieve this we retro-fit an off
Externí odkaz:
http://arxiv.org/abs/2010.16272
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Vision-based Simultaneous Localization And Mapping (VSLAM) is a mature problem in Robotics. Most VSLAM systems are feature based methods, which are robust and present high accuracy, but yield sparse maps with limited application for further navigatio
Externí odkaz:
http://arxiv.org/abs/1909.03917