Zobrazeno 1 - 10
of 102
pro vyhledávání: '"SLILATY, DANIEL"'
Autor:
Slilaty, Daniel, Zaslavsky, Thomas
Zaslavsky (1991) introduced a graphical structure called a biased graph and used it to characterize all single-element coextensions and elementary lifts of graphic matroids. We introduce a new, dual graphical structure that we call a cobiased graph a
Externí odkaz:
http://arxiv.org/abs/2401.17616
Autor:
SIVARAMAN, VAIDY1 vaidysivaraman@gmail.com, SLILATY, DANIEL2 daniel.slilaty@wright.edu
Publikováno v:
Transactions on Combinatorics. Mar2025, Vol. 14 Issue 1, p1-10. 10p.
Autor:
Sivaraman, Vaidy, Slilaty, Daniel
We characterize the 3-connected members of the intersection of the class of bicircular and cobicircular matroids. Aside from some exceptional matroids with rank and corank at most 5, this class consists of just the free swirls and their minors.
Externí odkaz:
http://arxiv.org/abs/2012.11712
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Robbins, Jakayla, Slilaty, Daniel
Publikováno v:
In Journal of Combinatorial Theory, Series B September 2023 162:71-117
Autor:
Abrams, Lowell, Slilaty, Daniel
A graph $G$ embedded in a surface $S$ is called an $S$-grid when every facial boundary walk has length four, that is, the topological dual graph of $G$ in $S$ is 4-regular. Aside from the case where $S$ is the torus or Klein bottle, an $S$-grid must
Externí odkaz:
http://arxiv.org/abs/1901.03682
Autor:
SLILATY, DANIEL1 daniel.slilaty@wright.edu
Publikováno v:
Transactions on Combinatorics. Summer2024, Vol. 13 Issue 2, p165-167. 3p.
Publikováno v:
European Journal of Combinatorics, Volume 85, March 2020
The class of quasi-graphic matroids recently introduced by Geelen, Gerards, and Whittle generalises each of the classes of frame matroids and lifted-graphic matroids introduced earlier by Zaslavsky. For each biased graph $(G, \mathcal B)$ Zaslavsky d
Externí odkaz:
http://arxiv.org/abs/1808.00489
Publikováno v:
In Journal of Combinatorial Theory, Series B July 2022 155:202-255
Let $M$ be a 3-connected matroid and let $\mathbb F$ be a field. Let $A$ be a matrix over $\mathbb F$ representing $M$ and let $(G,\mathcal B)$ be a biased graph representing $M$. We characterize the relationship between $A$ and $(G,\mathcal B)$, set
Externí odkaz:
http://arxiv.org/abs/1609.05574