Zobrazeno 1 - 10
of 73 275
pro vyhledávání: '"SL(2)"'
Autor:
Weston, Robert
We consider the cyclic representations $\Omega_{rs}$ of $ U_q(\widehat{\mathfrak{sl}}_2)$ at $q^N=1$ that depend upon two points $r,s$ in the chiral Potts algebraic curve. We show how $\Omega_{rs}$ is related to the tensor product $\rho_r\otimes \bar
Externí odkaz:
http://arxiv.org/abs/2412.14811
Autor:
Das, Arpan
Let $p$ be a prime and $F$ a non-archimedean local field of residue characteristic $p$. In this paper, we study the restriction of smooth irreducible $\bar{\mathbb{F}}_p$-representations of $\mathrm{SL}_2(F)$ to its Borel subgroup. In essence, we sho
Externí odkaz:
http://arxiv.org/abs/2412.11751
Autor:
Monteiro, Nariel, Stasinski, Alexander
The conjugation representation of a finite group $G$ is the complex permutation module defined by the action of $G$ on itself by conjugation. Addressing a problem raised by Hain motivated by the study of a Hecke action on iterated Shimura integrals,
Externí odkaz:
http://arxiv.org/abs/2412.08539
Autor:
Adamovic, Drazen, Nakatsuka, Shigenori
In this article, we shall describe the center of the universal affine vertex superalgebra $V^{\kappa_c}(\mathfrak g)$ associated with $\mathfrak g=\mathfrak{sl}_{2|1}, \mathfrak {gl}_{2|1}$ at the critical level $\kappa_c$ and prove the conjecture of
Externí odkaz:
http://arxiv.org/abs/2412.04895
Let $\mathbb{K}$ be an algebraically closed field of characteristic zero and $\mathbb{K}[x,y]$ the polynomial ring. The group $\text{SL}_{2}\left(\mathbb{K}[x,y]\right)$ of all matrices with determinant equal to $1$ over $\mathbb{K}[x,y]$ can not be
Externí odkaz:
http://arxiv.org/abs/2412.03688
Autor:
Gutierrez, Gonzalo, Farinati, Marco
In this paper, we generalize the Tits construction for Lie superalgebras such that $\mathfrak{sl}_2$ acts by even derivations and decompose, as $\mathfrak{sl}_2$-module, into a direct sum of copies of the adjoint, the natural and the trivial represen
Externí odkaz:
http://arxiv.org/abs/2411.17031
Autor:
Parker, Chris, van Beek, Martin
We describe all of the basic $\mathbb{F}_p\mathrm{SL}_2(p^r)$ representations which lift to $\mathbb{Z}/p^s\mathbb{Z}$ representations for $s>1$, observing that they almost never do. We also show that two related indecomposable $\mathbb{F}_p \mathrm{
Externí odkaz:
http://arxiv.org/abs/2411.16379