Zobrazeno 1 - 10
of 17
pro vyhledávání: '"SIS (small intestine submucosa)"'
Autor:
Xianglin Zhang, Qi Zhang, Wenqing Tian, Chunqing Meng, Xiaodong Guo, Tingfang Sun, Keda Yu, Qiuyue Ding, Zekang Xiong, Bin Wu, Wancheng Zhang
Publikováno v:
Bioactive Materials, Vol 6, Iss 11, Pp 4163-4175 (2021)
Bioactive Materials
Bioactive Materials
In situ tissue engineering is a powerful strategy for the treatment of bone defects. It could overcome the limitations of traditional bone tissue engineering, which typically involves extensive cell expansion steps, low cell survival rates upon trans
Autor:
Fabio Zucchetta, Massimo A. Padalino, Vladimiro L. Vida, Biagio Castaldi, Michele Gallo, Ornella Milanesi, Annalisa Angelini, Giovanni Stellin, Marny Fedrigo
Publikováno v:
Seminars in thoracic and cardiovascular surgery. 28(2)
Surgery for congenital valve anomalies in children is a challenging topic. We aim to assess early and late functional outcomes of CorMatrix scaffold after repair of aortic and pulmonary valves (PV) in congenital heart disease in a prospective nonrand
Publikováno v:
1. DANE, Defunciones por grupo de edad y sexo, según departamentos de ocurrencia y grupos de causas de defunción, Tabla 11, 2009.
2. Who, World Health Organization, WHO: Ten leading causes of deaths in high-income and low-income and middle-income countries. 2008.
3. Moll FL, Powell JT, Fraederich G, Verzini F, Haulon S, Waltham M, et al. Management of Abdominal Aortic Aneurysma Clinical Practice Guidelines of the European Society for Vascular Surgery. Eur J Vasc Endovasc Surg. 2011; Vol (41):51-58..
4. Baas AF, Kranendonk SE. Abdominal Aortic Aneurism. Clinical Cardiogenetics. 2011; Cap 27.
5. Goeau-Brissonniere O, Javerliat I, Coggia M. Advances in Vascular Grafts for Thoraco-Abdominal Aortic Open Surgery. Thoraco-Abdominal Aorta: Surgical and Anesthetic Management. 2011; (54).
6. Piterina AV, Cloonan AJ, Meaney CL, Davis LM, Callanan A, Walsh M T, Mcgloughlin TM. ECM-based materials in cardiovascular applications: inherent healing potential and augmentation of native regenerative processes, Int J Mol Sci. 2009; (10): 4375–4417.
7. Fauci AS, Braunwald E, Kasper DL, Hauser SL, Longo DL, Jameson JL, et al. Harrison’s Principles of Internal Medicine. 17th ed. 2008. New York: McGraw Hill.
8. Bittl J. Catheter Interventions for Hemodialysis Fistulas and Grafts. J Am Coll Cardiol Intv. 2010; (3)1–11.
9. Chalem F. et al. tratado de medicina interna, 4ª ed. 2005; editorial médica celsus. (1):1159.
11. Berardinelli L, grafts and graft materials as vascular substitutes for haemodialysis access construction. eur j vasc endovasc surg. 2006; (32): 203–211.
12. Scott E, Glickman M, conduits for hemodialysis access. semin vasc surg, 2007; (20): 158-163.
13. Jiménez-Almonacid P, Del Río P, Lasala M, et al. primer acceso vascular no autólogo para hemodiálisis. Nefrología.2004; (24):559-563.
14. Stehman-Breen K, Sherrard D, Gillen D, Caps M, determinants of type and timing of initial permanent hemodialysis vascular access. kidney international. 2000; (57):639–645.
15. Roy-Chaudhery P, Kelly B, Melhem M, et al. vascular access in hemodialysis: issues, management, and emerging concepts. cardiol clin. 2005; (23):249–273.
16. Naito Y, Shinoka T, Duncan, D, Hibino N, Solomon D, Cleary M, Rathore A, Fein C, Church S, Breuer C. vascular tissue engineering: towards the next generation vascular grafts. adv drug deliver rev.2011; (63): 312 – 323
17. Mcallister et al. hemodialysis access with an autologous tissue-engineered vascular graft. Lancet. 2009; (373)1440–1446.
18. Kaushal S, Amiel G E, Guleserian K J, Shapira O M, Perry T, Sutherland F W, Rabkin E, Moran AM, Schoen FJ, Atala A, Soker S, Bischo J, Mayer JE. functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. nat med.2001; (7): 1035–1040.
19. Soletti L, Hong Y, Guan J, Stankus J, El-Kurdi M S, Wagner W R, Vorp D A. a bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. acta biomater 2010; (6):110 – 122.
20. Ratcliffe A, tissue engineering of vascular grafts. matrix boil. 2000; (19):353–357.
21. Sandusky GE, Lantz GC, Badylak SF. healing comparison of small intestine submucosa and eptfe grafts in the canine carotid artery. j surg res. 1995; (58):415–420.
22. Badylak SF, Freytes DO, Gilbert TW. extracellular matrix as a biological scaffold material: structure and function. acta biomater. 2009; (5):1 – 13.
23. Kim BS, Park I K, Hoshiba T, Tiang HL, Choi YJ, Akaike T, Cho CS. design of artificial extracellular matrices for tissue engineering. prog polym sci. 2011; (36): 238– 268.
24. Badylak SF, Coffey AC, Geddes LE, Lantz GC. tissue graft composition. us patent. 1988; (4):178.
25. Lantz GC, Badylak SF, Hiles MC, Coffey AC, Geddes LE, Kokini K, Sandusky GE, Morff RJ. small intestinal submucosa as a vascular graft: a review. j invest surg.1993; (6):297–310.
26. Badylak SF, Gilbert T, Myers-Irvin J. the extracellular matrix as a biologic scaffold for tissue engineering. in tissue engineering. 2008: 121-128.
27. Badylak SF. xenogeneic extracellular matrix as a scaffold for tissue reconstruction. transpl immunol. 2004; (12):367 – 377.
28. Lantz GC, Badylak SF, Coey AC, Geddes IE, Blevins WE. small intestinal submucosa as a small-diameter arterial graft in the dog. j invest surg. 1990; (3):217–227.
29. Sandusky GE, Badylak SF, Morff RJ, Johnson WD, Lantz G. histologic findings after in vivo placement of small intestine submucosal vascular grafts and saphenous vein grafts in the carotid artery in dogs. am j pathol.1992; (140): 317–324.
30. Huynh T, Abraham G, Murray J, Brockbank K, Hagen PO, Sullivan S. remodeling of an acellular collagen graft into a physiologically responsive neovessel. nat biotechnol. 1999; (17):1083–1086.
31. Kohler TR, Kirkman TR, Kraiss IW, Zierler BK, Clowes AW. increased blood flow inhibits neointimal hyperplasia in endothelialized vascular grafts. circ res.1991; (69):1557–1565.
32. Holzapfel GA, Thomas C, Ogden RW. a new constitutive framework for arterial wall mechanics and a comparative study of material models. printed in cardiovascular soft tissue mechanics. 2004.
33. Zulliger MA, Fridez P, Hayashi K, Stergiopulos N. a strain energy function for arteries accounting for wall composition and structure. journal of biomechanics. 2004;(37), 989-1000.
34. Gundiah N, Ratcliffe MB, Pruitt IA. determination of strain energy function for arterial elastin: experiments using histology and mechanical tests. journal of biomechanics. 2007; (40):586-594.
35. Rezakhaniha R, Stergiopulos N. a structural model of the venous wall considering elastin anisotropy. journal of biomechanical engineering.2014;(37).
36. Lanir Y. a structural theory for the homogenous biaxial stress-strain relationships in flat collagenous tissues. j. biomechanics. 1979; (12):423-436.
37. Fung YCh. biomechanics: mechanical properties of living tissues. second edition, springer-verlag, 1993.
38. Sacks MS. biaxial mechanical evaluation of planar biological materials. journal of elasticity. 2000; (61):199-246.
39. Choi HS, Vito RP. two dimensional stress strain relationship for canine pericardium. journal of biomedical engineering.1990;(112):153-159.
40. Aristizábal HA. caracterización mecánica de injertos de submucosa intestinal porcina (sis) en aplicaciones vasculares, proyecto de grado (pregrado), universidad de los andes. Bogotá. 2009.
41. Beltrán R. estudio de la remodelación de la pared arterial usando soportes de sis, proyecto de grado, universidad de los andes, bogotá 2007.
42. Navarro J. caracterización mecánica de injertos de submucosa intestinal y arterias, por medio de ensayos de tensión biaxiales y uniaxiales. proyecto intermedio. universidad de los andes. Bogotá. 2009.
43. Sánchez, D. análisis mecánico de injertos de colágeno en un modelo in vivo, proyecto de grado, universidad de los andes. Bogotá. 2005.
44. Castañeda N. cálculo de esfuerzos y deformaciones en la pared arterial. proyecto de grado, universidad de los andes. Bogotá. 2009.
45. Navarro J. caracterización mecánica de injertos de colágenos implantados en vena yugular, por medio de ensayos de tensión biaxial y de presión-volumen. proyecto de grado. universidad de los andes. Bogotá. 2010.
46. Lally C, Reid A J, Prendergast PJ. elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension. annals of biomedical engineering. 2004; (32): 1355-1364.
47. Sacks MS. a method for planar biaxial mechanical testing that includes in-plan shear. journal of biomechanical engineering. 1999; (121): 551-555. Dee KC., mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials. 2003; (24):3805-3813.
48. Vesely I. the role of elastin in aortic valve mechanics. journal of biomechanics. 1998; (31):115-123.
49. Dinnar U. cardiovascular fluid dynamics. crc press, united states, florida, 1981.
50. Brüel A, Oxlund H. changes in biomechanical properties, composition of collagen and elastin, and advanced glycation endproducts of the rat aorta in relation to age. Atherosclerosis.1996;(127): 155-65.
51. Lee T C, Midura RJ, Hascall VC, Vesely I. the effect of elastin damage on the mechanics of the aortic valve. journal of biomechanics.2001; (34):203-210.
52. Chesler NC, Thompson-Figueroa J, Millburne K. measurements of mouse pulmonary artery biomechanics. journal of biomechanical engineering. 2004; (126):309-314.
53. Meyerson SI, Moawad J, Loth F, Skelly Cl, Bassiouny HS, Mckinsey JF, Gewertz Bl, Schwartz lB. effective hemodynamic diameter: an intrinsic property of vein grafts with predictive value for patency. j vasc surg. 2000;(31): 910 – 917.
54. Wei HJ, Liang HC, Lee MH, Huang YC, Chang Y, Sung HW. construction of varying porous structures in acellular bovine pericardia as a tissue-engineering extracellular matrix. Biomaterials. 2005; (26):1905 – 1913.
55. Zilla P, Bezuidenhout D, Human P. prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials.2007;(28):5009 – 5027.
56. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. biomaterials science: an introduction to materials in medicine. academic press. 2004. elsevier academic press, second ed.
57. D’amore A, Stella JA, Wagner WR, Sacks MS. characterization of the complete fiber network topology of planar fibrous tissues and scaffolds. Biomaterials. 2010(31): 5345 – 5354
58. Voronov R, Yangordon S, Sikavitsas VJ, Papavassiliou DV. computational modeling of flow-induced shear stresses within 3d salt-leached porous scaffolds imaged via micro-ct. journal of biomechanics; (43): 1279 – 1286.
59. Hibbeler, R. C., structural analysis. prentice hall. 2008.
Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
2. Who, World Health Organization, WHO: Ten leading causes of deaths in high-income and low-income and middle-income countries. 2008.
3. Moll FL, Powell JT, Fraederich G, Verzini F, Haulon S, Waltham M, et al. Management of Abdominal Aortic Aneurysma Clinical Practice Guidelines of the European Society for Vascular Surgery. Eur J Vasc Endovasc Surg. 2011; Vol (41):51-58..
4. Baas AF, Kranendonk SE. Abdominal Aortic Aneurism. Clinical Cardiogenetics. 2011; Cap 27.
5. Goeau-Brissonniere O, Javerliat I, Coggia M. Advances in Vascular Grafts for Thoraco-Abdominal Aortic Open Surgery. Thoraco-Abdominal Aorta: Surgical and Anesthetic Management. 2011; (54).
6. Piterina AV, Cloonan AJ, Meaney CL, Davis LM, Callanan A, Walsh M T, Mcgloughlin TM. ECM-based materials in cardiovascular applications: inherent healing potential and augmentation of native regenerative processes, Int J Mol Sci. 2009; (10): 4375–4417.
7. Fauci AS, Braunwald E, Kasper DL, Hauser SL, Longo DL, Jameson JL, et al. Harrison’s Principles of Internal Medicine. 17th ed. 2008. New York: McGraw Hill.
8. Bittl J. Catheter Interventions for Hemodialysis Fistulas and Grafts. J Am Coll Cardiol Intv. 2010; (3)1–11.
9. Chalem F. et al. tratado de medicina interna, 4ª ed. 2005; editorial médica celsus. (1):1159.
11. Berardinelli L, grafts and graft materials as vascular substitutes for haemodialysis access construction. eur j vasc endovasc surg. 2006; (32): 203–211.
12. Scott E, Glickman M, conduits for hemodialysis access. semin vasc surg, 2007; (20): 158-163.
13. Jiménez-Almonacid P, Del Río P, Lasala M, et al. primer acceso vascular no autólogo para hemodiálisis. Nefrología.2004; (24):559-563.
14. Stehman-Breen K, Sherrard D, Gillen D, Caps M, determinants of type and timing of initial permanent hemodialysis vascular access. kidney international. 2000; (57):639–645.
15. Roy-Chaudhery P, Kelly B, Melhem M, et al. vascular access in hemodialysis: issues, management, and emerging concepts. cardiol clin. 2005; (23):249–273.
16. Naito Y, Shinoka T, Duncan, D, Hibino N, Solomon D, Cleary M, Rathore A, Fein C, Church S, Breuer C. vascular tissue engineering: towards the next generation vascular grafts. adv drug deliver rev.2011; (63): 312 – 323
17. Mcallister et al. hemodialysis access with an autologous tissue-engineered vascular graft. Lancet. 2009; (373)1440–1446.
18. Kaushal S, Amiel G E, Guleserian K J, Shapira O M, Perry T, Sutherland F W, Rabkin E, Moran AM, Schoen FJ, Atala A, Soker S, Bischo J, Mayer JE. functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. nat med.2001; (7): 1035–1040.
19. Soletti L, Hong Y, Guan J, Stankus J, El-Kurdi M S, Wagner W R, Vorp D A. a bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. acta biomater 2010; (6):110 – 122.
20. Ratcliffe A, tissue engineering of vascular grafts. matrix boil. 2000; (19):353–357.
21. Sandusky GE, Lantz GC, Badylak SF. healing comparison of small intestine submucosa and eptfe grafts in the canine carotid artery. j surg res. 1995; (58):415–420.
22. Badylak SF, Freytes DO, Gilbert TW. extracellular matrix as a biological scaffold material: structure and function. acta biomater. 2009; (5):1 – 13.
23. Kim BS, Park I K, Hoshiba T, Tiang HL, Choi YJ, Akaike T, Cho CS. design of artificial extracellular matrices for tissue engineering. prog polym sci. 2011; (36): 238– 268.
24. Badylak SF, Coffey AC, Geddes LE, Lantz GC. tissue graft composition. us patent. 1988; (4):178.
25. Lantz GC, Badylak SF, Hiles MC, Coffey AC, Geddes LE, Kokini K, Sandusky GE, Morff RJ. small intestinal submucosa as a vascular graft: a review. j invest surg.1993; (6):297–310.
26. Badylak SF, Gilbert T, Myers-Irvin J. the extracellular matrix as a biologic scaffold for tissue engineering. in tissue engineering. 2008: 121-128.
27. Badylak SF. xenogeneic extracellular matrix as a scaffold for tissue reconstruction. transpl immunol. 2004; (12):367 – 377.
28. Lantz GC, Badylak SF, Coey AC, Geddes IE, Blevins WE. small intestinal submucosa as a small-diameter arterial graft in the dog. j invest surg. 1990; (3):217–227.
29. Sandusky GE, Badylak SF, Morff RJ, Johnson WD, Lantz G. histologic findings after in vivo placement of small intestine submucosal vascular grafts and saphenous vein grafts in the carotid artery in dogs. am j pathol.1992; (140): 317–324.
30. Huynh T, Abraham G, Murray J, Brockbank K, Hagen PO, Sullivan S. remodeling of an acellular collagen graft into a physiologically responsive neovessel. nat biotechnol. 1999; (17):1083–1086.
31. Kohler TR, Kirkman TR, Kraiss IW, Zierler BK, Clowes AW. increased blood flow inhibits neointimal hyperplasia in endothelialized vascular grafts. circ res.1991; (69):1557–1565.
32. Holzapfel GA, Thomas C, Ogden RW. a new constitutive framework for arterial wall mechanics and a comparative study of material models. printed in cardiovascular soft tissue mechanics. 2004.
33. Zulliger MA, Fridez P, Hayashi K, Stergiopulos N. a strain energy function for arteries accounting for wall composition and structure. journal of biomechanics. 2004;(37), 989-1000.
34. Gundiah N, Ratcliffe MB, Pruitt IA. determination of strain energy function for arterial elastin: experiments using histology and mechanical tests. journal of biomechanics. 2007; (40):586-594.
35. Rezakhaniha R, Stergiopulos N. a structural model of the venous wall considering elastin anisotropy. journal of biomechanical engineering.2014;(37).
36. Lanir Y. a structural theory for the homogenous biaxial stress-strain relationships in flat collagenous tissues. j. biomechanics. 1979; (12):423-436.
37. Fung YCh. biomechanics: mechanical properties of living tissues. second edition, springer-verlag, 1993.
38. Sacks MS. biaxial mechanical evaluation of planar biological materials. journal of elasticity. 2000; (61):199-246.
39. Choi HS, Vito RP. two dimensional stress strain relationship for canine pericardium. journal of biomedical engineering.1990;(112):153-159.
40. Aristizábal HA. caracterización mecánica de injertos de submucosa intestinal porcina (sis) en aplicaciones vasculares, proyecto de grado (pregrado), universidad de los andes. Bogotá. 2009.
41. Beltrán R. estudio de la remodelación de la pared arterial usando soportes de sis, proyecto de grado, universidad de los andes, bogotá 2007.
42. Navarro J. caracterización mecánica de injertos de submucosa intestinal y arterias, por medio de ensayos de tensión biaxiales y uniaxiales. proyecto intermedio. universidad de los andes. Bogotá. 2009.
43. Sánchez, D. análisis mecánico de injertos de colágeno en un modelo in vivo, proyecto de grado, universidad de los andes. Bogotá. 2005.
44. Castañeda N. cálculo de esfuerzos y deformaciones en la pared arterial. proyecto de grado, universidad de los andes. Bogotá. 2009.
45. Navarro J. caracterización mecánica de injertos de colágenos implantados en vena yugular, por medio de ensayos de tensión biaxial y de presión-volumen. proyecto de grado. universidad de los andes. Bogotá. 2010.
46. Lally C, Reid A J, Prendergast PJ. elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension. annals of biomedical engineering. 2004; (32): 1355-1364.
47. Sacks MS. a method for planar biaxial mechanical testing that includes in-plan shear. journal of biomechanical engineering. 1999; (121): 551-555. Dee KC., mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials. 2003; (24):3805-3813.
48. Vesely I. the role of elastin in aortic valve mechanics. journal of biomechanics. 1998; (31):115-123.
49. Dinnar U. cardiovascular fluid dynamics. crc press, united states, florida, 1981.
50. Brüel A, Oxlund H. changes in biomechanical properties, composition of collagen and elastin, and advanced glycation endproducts of the rat aorta in relation to age. Atherosclerosis.1996;(127): 155-65.
51. Lee T C, Midura RJ, Hascall VC, Vesely I. the effect of elastin damage on the mechanics of the aortic valve. journal of biomechanics.2001; (34):203-210.
52. Chesler NC, Thompson-Figueroa J, Millburne K. measurements of mouse pulmonary artery biomechanics. journal of biomechanical engineering. 2004; (126):309-314.
53. Meyerson SI, Moawad J, Loth F, Skelly Cl, Bassiouny HS, Mckinsey JF, Gewertz Bl, Schwartz lB. effective hemodynamic diameter: an intrinsic property of vein grafts with predictive value for patency. j vasc surg. 2000;(31): 910 – 917.
54. Wei HJ, Liang HC, Lee MH, Huang YC, Chang Y, Sung HW. construction of varying porous structures in acellular bovine pericardia as a tissue-engineering extracellular matrix. Biomaterials. 2005; (26):1905 – 1913.
55. Zilla P, Bezuidenhout D, Human P. prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials.2007;(28):5009 – 5027.
56. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. biomaterials science: an introduction to materials in medicine. academic press. 2004. elsevier academic press, second ed.
57. D’amore A, Stella JA, Wagner WR, Sacks MS. characterization of the complete fiber network topology of planar fibrous tissues and scaffolds. Biomaterials. 2010(31): 5345 – 5354
58. Voronov R, Yangordon S, Sikavitsas VJ, Papavassiliou DV. computational modeling of flow-induced shear stresses within 3d salt-leached porous scaffolds imaged via micro-ct. journal of biomechanics; (43): 1279 – 1286.
59. Hibbeler, R. C., structural analysis. prentice hall. 2008.
Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
Introducción: La evaluación de injertos vasculares de submucosa de intestino delgado para la regeneración de vasos sanguíneos ha producido una permeabilidad variable (0-100%) que ha sido concurrente con la variabilidad en las técnicas de fabrica
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a36cdd9d7f25beae44d54f7bef720b7f
Autor:
J C Briceño, Andres Gonzalez-Mancera, Diana M. Sánchez-Palencia, William R. Wagner, Antonio D’ Amore
Publikováno v:
Journal of biomechanics. 47(11)
In small intestinal submucosa scaffolds for functional tissue engineering, the impact of scaffold fabrication parameters on success rate may be related to the mechanotransductory properties of the final microstructural organization of collagen fibers
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Sun T; Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China., Meng C; Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China., Ding Q; Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China., Yu K; Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China., Zhang X; State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China., Zhang W; State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China., Tian W; State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China., Zhang Q; Wuhan Hi-tech Medical Tissue Research Center, Wuhan, 430206, China., Guo X; Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China., Wu B; State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China., Xiong Z; Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Publikováno v:
Bioactive materials [Bioact Mater] 2021 Apr 24; Vol. 6 (11), pp. 4163-4175. Date of Electronic Publication: 2021 Apr 24 (Print Publication: 2021).