Zobrazeno 1 - 10
of 64
pro vyhledávání: '"SHOSHANA ABRAMOVICH"'
Autor:
Shoshana Abramovich, Lars-Erik Persson
Publikováno v:
Journal of Inequalities and Applications, Vol 2016, Iss 1, Pp 1-9 (2016)
Abstract Let ( μ , Ω ) $( \mu,\Omega ) $ be a probability measure space. We consider the so-called ‘Jensen gap’ J ( φ , μ , f ) = ∫ Ω φ ( f ( s ) ) d μ ( s ) − φ ( ∫ Ω f ( s ) d μ ( s ) ) $$ J ( \varphi,\mu,f ) = \int_{\Omega}\var
Externí odkaz:
https://doaj.org/article/8a33106531e840bcb9350af373b92d8b
Autor:
Shoshana Abramovich
Publikováno v:
Aequationes mathematicae. 97:75-88
Autor:
Shoshana Abramovich
Publikováno v:
Series on Computers and Operations Research ISBN: 9789811261565
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c099c8c9832dc3778e3f771577b3cd6e
https://doi.org/10.1142/9789811261572_0002
https://doi.org/10.1142/9789811261572_0002
Autor:
Shoshana Abramovich
Publikováno v:
Aequationes mathematicae. 96:201-219
By using superquadracity, the new inequalities in this paper generalize a result of Hardy–Littlewood–Polya and refine Jensen’s type inequalities. Also, inequalities related to rearrangements of sets are obtained.
Autor:
Shoshana Abramovich
Publikováno v:
Journal of Mathematical Inequalities. :559-575
Autor:
Shoshana Abramovich, Lars-Erik Persson
Publikováno v:
Mathematical Inequalities & Applications. :447-458
In this paper we discuss the Hermite-Hadamard and Fejer inequalities vis-a-vis the convexity concept. In particular, we derive some new theorems and examples where Hermite-Hadamard and Fejer type i ...
Autor:
Shoshana Abramovich
Publikováno v:
Operator Theory, Functional Analysis and Applications ISBN: 9783030519445
In this paper we extend the well known Heinz inequality which says that \(2\sqrt {a_{1}a_{2}}\leq H(t) \leq a_{1}+a_{2}\), a1, a2 > 0, 0 ≤ t ≤ 1, where \(H(t)=a_{1}^{t}a_{2}^{1-t}+a_{1}^{1-t}a_{2}^{t}\). We discuss the bounds of H(t) in the inter
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::43fd8c3b8e256d87a5c230ee4f901608
https://doi.org/10.1007/978-3-030-51945-2_1
https://doi.org/10.1007/978-3-030-51945-2_1
Autor:
Shoshana Abramovich
Publikováno v:
Nonlinear Analysis, Differential Equations, and Applications ISBN: 9783030725624
By using compound superquadratic functions, the inequalities presented in this paper refine and extend Jensen and Jensen-Steffensen inequalities.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d9f402ec7c89db25c0e629c541d05588
https://doi.org/10.1007/978-3-030-72563-1_1
https://doi.org/10.1007/978-3-030-72563-1_1
Autor:
Shoshana Abramovich
Publikováno v:
Mathematical Analysis in Interdisciplinary Research ISBN: 9783030847203
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a63935d07887ef263847cf7562e07628
https://doi.org/10.1007/978-3-030-84721-0_3
https://doi.org/10.1007/978-3-030-84721-0_3
Autor:
Lars-Erik Persson, Shoshana Abramovich
Publikováno v:
Mathematical Inequalities & Applications. :759-772
In this paper extensions and refinements of Hermite-Hadamard and Fejer type inequalities are derived including monotonicity of some functions related to the Fejer inequality and extensions for func ...