Zobrazeno 1 - 10
of 59
pro vyhledávání: '"SHIN, JIYONG"'
Publikováno v:
In Journal of Loss Prevention in the Process Industries December 2024 92
Autor:
Kim, Mi-Ju, Shin, So Won, Shin, Jiyong, Kim, Eiseul, Yang, Seung-Min, Gwak, Yoon-soo, Lee, Shinyoung, Kim, Hae-Yeong
Publikováno v:
In Food Bioscience February 2024 57
Autor:
Shin, Jiyong
Publikováno v:
Statistics and Probability letters, 2019
The Liouville Brownian motion which was introduced in \cite{GRV} is a natural diffusion process associated with a random metric in two dimensional Liouville quantum gravity. In this paper we construct the Liouville Brownian motion via Dirichlet form
Externí odkaz:
http://arxiv.org/abs/1901.07753
Autor:
Shin, Jiyong
The Liouville Brownian motion was introduced in \cite{GRV} as a time changed process $B_{A_t^{-1}}$ of a planar Brownian motion $(B_t)_{t \ge 0}$, where $(A_t)_{t \ge 0}$ is the positive continuous additive functional of $(B_t)_{t \ge 0}$ in the stri
Externí odkaz:
http://arxiv.org/abs/1901.07755
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Shin, Jiyong, Trutnau, Gerald
Publikováno v:
Romanian Journal of Pure and Applied Mathematics, Vol. 62, No. 1, (2017), pp. 217-258
This survey paper is a structured concise summary of four of our recent papers on the stochastic regularity of diffusions that are associated to regular strongly local (but not necessarily symmetric) Dirichlet forms. Here by stochastic regularity we
Externí odkaz:
http://arxiv.org/abs/1611.04885
Autor:
Shin, Jiyong
We apply improved elliptic regularity results to a concrete symmetric Dirichlet form and various non-symmetric Dirichlet forms with possibly degenerate symmetric diffusion matrix. Given the (non)-symmetric Dirichlet form, using elliptic regularity re
Externí odkaz:
http://arxiv.org/abs/1606.05857
Autor:
Shin, Jiyong
For given strongly local Dirichlet forms with possibly degenerate symmetric (sub)-elliptic matrix, we show the existence of weak solutions to the stochastic differential equations (associated with the Dirichlet forms) starting from all points in $\R^
Externí odkaz:
http://arxiv.org/abs/1606.05858
Autor:
Shin, Jiyong, Hwang, Inha, Kim, Dongpil, Moon, Taewon, Kim, Jaewoo, Kang, Woo Hyun, Son, Jung Eek
Publikováno v:
In Agricultural and Forest Meteorology 15 January 2021 296
Autor:
Shin, Jiyong, Trutnau, Gerald
Using analysis for 2-admissible functions in weighted Sobolev spaces and stochastic calculus for possibly degenerate symmetric elliptic forms, we construct weak solutions to a wide class of stochastic differential equations starting from an explicitl
Externí odkaz:
http://arxiv.org/abs/1508.02278