Zobrazeno 1 - 10
of 112
pro vyhledávání: '"SHARMA, HARIOM"'
Autor:
Sharma, Hariom, Verma, Mahendra Kumar
Let $D$ denote a quaternion division algebra over a non-archimedean local field $F$ with characteristic zero. Let $Sp_n(D)$ be the unique non-split inner form of the symplectic group $Sp_{2n}(F)$. An irreducible admissible representation $(\pi, V)$ o
Externí odkaz:
http://arxiv.org/abs/2405.05680
Given a prime power $q$ and a positive integer $n$, let $\mathbb{F}_{q^{n}}$ represents a finite extension of degree $n$ of the finite field ${\mathbb{F}_{q}}$. In this article, we investigate the existence of $m$ elements in arithmetic progression,
Externí odkaz:
http://arxiv.org/abs/2401.01819
Autor:
Sharma, Hariom, Verma, Mahendra Kumar
Let $D$ be a quaternion division algebra over a non-archimedean local field $K$ of characteristic zero, and let $Sp_n(D)$ be the unique non-split inner form of the symplectic group $Sp_{2n}(K)$. This paper classifies the irreducible admissible repres
Externí odkaz:
http://arxiv.org/abs/2311.11674
Given ${\mathbb{F}_{p^t}}$, a field with $p^t$ elements, where $p$ is a prime power, $t$ is a positive integer. Let $f(x)$ be a polynomial over $\mathbb{F}_{p^t}$ of degree $m$ with some restrictions. In this paper, we construct a sufficient conditio
Externí odkaz:
http://arxiv.org/abs/2308.02846
Autor:
Adhikari, Prakash, Kharel, Binit, Ma, Jasmine, Baral, Dipak Raj, Pandey, Tilchan, Rijal, Rajendra, Sharma, Hariom
Publikováno v:
International Archives of Otorhinolaryngology, Vol 12, Iss 4, Pp 502-505 (2008)
Introduction: Ear disease in children is a major public health concern in developing countries. In spite of availability of potent antibiotics, severe life threatening complications of ear diseases can occur. Objective: This study was done to find ou
Externí odkaz:
https://doaj.org/article/325007de3cd545648a5b4da515c25fde
Autor:
Sharma, Hariom, Sharma, R. K.
Given $m, n, q\in \mathbb{N}$ such that $q$ is a prime power and $m\geq 3$, $a\in \mathbb{F}_q$, we establish a sufficient condition for the existence of primitive pair $(\alpha, f(\alpha))$ in $\mathbb{F}_{q^m}$ such that $\alpha$ is normal over $\m
Externí odkaz:
http://arxiv.org/abs/2101.08191
Autor:
Sharma, Hariom, Sharma, R. K.
Let $F=\mathbb{F}_{q^m}$, $m>6$, $n$ a positive integer, and $f=p/q$ with $p$, $q$ co-prime irreducible polynomials in $F[x]$ and deg$(p)$ $+$ deg$(q)= n$. A sufficient condition has been obtained for the existence of primitive pairs $(\alpha, f(\alp
Externí odkaz:
http://arxiv.org/abs/2004.10719
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Given a prime power $q$ and an integer $n\geq2$, we establish a sufficient condition for the existence of a primitive pair $(\alpha,f(\alpha))$ where $\alpha \in \mathbb{F}_q$ and $f(x) \in \mathbb{F}_q(x)$ is a rational function of degree $n$. (Here
Externí odkaz:
http://arxiv.org/abs/1909.13074
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.