Zobrazeno 1 - 10
of 595
pro vyhledávání: '"SHAH, NIMISH A."'
We prove an effective closing lemma for unipotent flows on quotients of perfect real groups. This is largely motivated by recent developments in effective unipotent dynamics.
Comment: 24 pages
Comment: 24 pages
Externí odkaz:
http://arxiv.org/abs/2410.19305
We extend Ratner's theorem on equidistribution of individual orbits of unipotent flows on finite volume homogeneous spaces of Lie groups to trajectories of non-contracting curves definable in polynomially bounded o-minimal structures. To be precise,
Externí odkaz:
http://arxiv.org/abs/2407.04935
Publikováno v:
2023 IEEE International Symposium on Workload Characterization (IISWC)
GPGPU execution analysis has always been tied to closed-source, proprietary benchmarking tools that provide high-level, non-exhaustive, and/or statistical information, preventing a thorough understanding of bottlenecks and optimization possibilities.
Externí odkaz:
http://arxiv.org/abs/2407.11999
Autor:
Shah, Nimish A., Yang, Pengyu
Publikováno v:
Trans. Amer. Math. Soc. Ser. B 11 (2024), 1249-1265
In Diophantine approximation, the notion of singular vectors was introduced by Khintchine in the 1920's. We study the set of singular vectors on an affine subspace of $\mathbb{R}^n$. We give an upper bound of its Hausdorff dimension in terms of the D
Externí odkaz:
http://arxiv.org/abs/2311.05834
Autor:
Shah, Nimish A.1 (AUTHOR), Yang, Pengyu2 (AUTHOR)
Publikováno v:
Transactions of the American Mathematical Society, Series B. 11/6/2024, Vol. 11, p1249-1265. 17p.
A growing number of applications like probabilistic machine learning, sparse linear algebra, robotic navigation, etc., exhibit irregular data flow computation that can be modeled with directed acyclic graphs (DAGs). The irregularity arises from the s
Externí odkaz:
http://arxiv.org/abs/2210.13184
Autor:
Shah, Nimish A., Yang, Pengyu
Publikováno v:
Mathematische Zeitschrift. Vol. 308, Page 60 (2024)
We show that under the action of $\mathrm{diag}(e^{nt},e^{-r_1(t)},\ldots,e^{-r_n(t)})\in\mathrm{SL}(n+1,\mathbb{R})$, where $r_i(t)\to\infty$, on the space of unimodular lattices in $\mathbb{R}^{n+1}$, the translates of any fixed-sized piece of a `n
Externí odkaz:
http://arxiv.org/abs/2204.03194
Autor:
Shah, Nimish A., Yang, Pengyu
Publikováno v:
Proceedings of the London Mathematical Society, Volume 129 (4), 2024
For the space of unimodular lattices in a Euclidean space, we give necessary and sufficient conditions for equidistribution of expanding translates of any real-analytic submanifold under a diagonal flow. This extends the earlier result of Shah in the
Externí odkaz:
http://arxiv.org/abs/2112.13952
Autor:
Shah, Nimish, Olascoaga, Laura Isabel Galindez, Zhao, Shirui, Meert, Wannes, Verhelst, Marian
Computation in several real-world applications like probabilistic machine learning, sparse linear algebra, and robotic navigation, can be modeled as irregular directed acyclic graphs (DAGs). The irregular data dependencies in DAGs pose challenges to
Externí odkaz:
http://arxiv.org/abs/2112.05660
Let $X=\text{SL}_3(\mathbb{R})/\text{SL}_3(\mathbb{Z})$, and $g_t=\text{diag}(e^{2t}, e^{-t}, e^{-t})$. Let $\nu$ denote the push-forward of the normalized Lebesgue measure on a segment of a straight line in the expanding horosphere of $\{g_t\}_{t>0}
Externí odkaz:
http://arxiv.org/abs/2106.08860