Zobrazeno 1 - 10
of 23
pro vyhledávání: '"SEZGİN AKBULUT"'
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2010 (2010)
We introduce a new two-step iterative scheme for two asymptotically nonexpansive nonself-mappings in a uniformly convex Banach space. Weak and strong convergence theorems are established for this iterative scheme in a uniformly convex Banach space. T
Externí odkaz:
https://doaj.org/article/931ca9ffa7d847d8a3ee4c912a5e9301
Publikováno v:
Turkish Journal of Mathematics. 46:1342-1359
Publikováno v:
Filomat. 33:5755-5765
In this paper, the Kantorovich operators Kn, n ? N are shown to be uniformly bounded in variable exponent Lebesgue spaces on the closed interval [0; 1]. Also an upper estimate is obtained for the difference Kn(f)-f for functions f of regularity of or
Publikováno v:
NWSA Academic Journals. 13:167-179
Fizik alaninda ve muhendislik uygulamalarinda bircok materyal ve problem klasik Lebesgue ve klasik Sobolev uzaylari kullanilarak yeterli dogrulukla matematiksel olarak modellenebilir. Ancak bazi nonhomojen materyallerin etkin enerjisinin dogru sekild
Autor:
Sezgin Akbulut, Birol Gunduz
Publikováno v:
Filomat. 32:1403-1411
In this paper, we study a one-step iterative scheme for two multi-valued nonexpansive maps in W-hyperbolic spaces. We establish strong and ?-convergence theorems for the proposed algorithm in a uniformly convex W-hyperbolic space which improve and ex
Publikováno v:
Filomat. 32:5665-5677
In this paper, we first give the modified version of the iteration process of Thakur et al. [15] which is faster than Picard, Mann, Ishikawa, Noor, Agarwal et al. [2] and Abbas et al. [1] processes. Secondly, we prove weak and strong convergence theo
Autor:
Sezgin Akbulut
Publikováno v:
Volume: 13, Issue: ÖZEL SAYI I 1-6
Erzincan University Journal of Science and Technology
Erzincan University Journal of Science and Technology
Birol Gündüz'ün ardında kalanlar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dd913bb44671ff0ec79043d95e52845a
https://dergipark.org.tr/tr/pub/erzifbed/issue/52745/663861
https://dergipark.org.tr/tr/pub/erzifbed/issue/52745/663861
Autor:
Birol Gunduz, Sezgin Akbulut
Publikováno v:
Mathematical Sciences. 10:55-61
The purpose of the present paper is threefold. First, to give definition of I-nonexpansive mappings in a Kohlenbach hyperbolic space. Second, to define a new one-step implicit iterative process. Finally, to establish strong and $$\Delta $$ -convergen
Publikováno v:
Open Mathematics, Vol 14, Iss 1, Pp 1065-1073 (2016)
In this article we modify an iteration process to prove strong convergence and Δ— convergence theorems for a finite family of nonexpansive multivalued mappings in hyperbolic spaces. The results presented here extend some existing results in the li
Publikováno v:
Gulf Journal of Mathematics. 6
This paper deals with the sub-supersolution method for the p(x) -Laplacian Dirichlet problem. A sub-supersolution principle for the Dirichlet problems involving the p(x)-Laplacian is established by using induction method.