Zobrazeno 1 - 10
of 55
pro vyhledávání: '"SEONG-DEOG YANG"'
Publikováno v:
Comptes Rendus. Mathématique. 361:257-264
Publikováno v:
Proceedings of the American Mathematical Society. 147:1677-1685
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783030685409
In this paper, we extend the notion of Schwarz reflection principle for smooth minimal surfaces to the discrete analogues for minimal surfaces, and use it to create global examples of discrete minimal nets with high degree of symmetry.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8f9336f59555d7b7c4fc491bb8c88afc
https://doi.org/10.1007/978-3-030-68541-6_3
https://doi.org/10.1007/978-3-030-68541-6_3
Publikováno v:
Comptes Rendus Mathematique. 356:333-339
Choe and Soret [1] constructed infinitely many compact embedded minimal surfaces in S 3 by desingularizing Clifford tori which meet each other along a great circle at the angle of the same size. We show their method works with some modifications to c
Publikováno v:
Journal of Computational Physics. 334:170-181
We present an efficient numerical scheme for the conservative AllenCahn (CAC) equation on various surfaces embedded in a narrow band domain in the three-dimensional space. We apply a quasi-Neumann boundary condition on the narrow band domain boundary
Autor:
Seong Deog Yang
Publikováno v:
Bulletin of the Korean Mathematical Society. 54:159-175
Autor:
Sang-Joong Lee, Seong-Deog Yang
Publikováno v:
Electrical Engineering. 99:59-62
It has been conventionally believed that there exist 4n variables P, Q, V, \(\theta \) for an n-bus system in the power flow computation, while we have 2n power flow equations. In this article, the authors argue that the number of variables in an n-b
Autor:
Kyeonghee Jo, Seong-Deog Yang
Publikováno v:
Journal for History of Mathematics. 29:191-216
Publikováno v:
Proceedings of the American Mathematical Society; Apr2019, Vol. 147 Issue 4, p1677-1685, 9p
Publikováno v:
Differential Geometry and its Applications. 40:209-222
We show that any ruled minimal surface in the Berger sphere is a helicoid whose axis is a Hopf fiber by solving the ruled minimal surface equation in the parametric form.