Zobrazeno 1 - 10
of 50
pro vyhledávání: '"SCHNITZER, JONAS"'
We construct global homotopies to compute differential Hochschild cohomologies in differential geometry. This relies on two different techniques: a symbol calculus from differential geometry and a coalgebraic version of the van Est theorem. Not only
Externí odkaz:
http://arxiv.org/abs/2410.15903
Autor:
Cueca, Miquel, Schnitzer, Jonas
In this paper we prove graded versions of the Darboux Theorem and Weinstein's Lagrangian tubular neighbourhood Theorem in order to study the deformation theory of Lagrangian $NQ$-submanifolds of degree $n$ symplectic $NQ$-manifolds. Using Weinstein's
Externí odkaz:
http://arxiv.org/abs/2309.05580
Autor:
Kraft, Andreas, Schnitzer, Jonas
In this review we give a detailed introduction to the theory of (curved) $L_\infty$-algebras and $L_\infty$-morphisms. In particular, we recall the notion of (curved) Maurer-Cartan elements, their equivalence classes and the twisting procedure. The m
Externí odkaz:
http://arxiv.org/abs/2207.01861
Autor:
Cueca, Miquel, Schnitzer, Jonas
Publikováno v:
In Advances in Mathematics December 2024 458 Part A
Publikováno v:
Pacific J. Math. 325 (2023) 47-83
In this paper we propose a reduction scheme for polydifferential operators phrased in terms of $L_\infty$-morphisms. The desired reduction $L_\infty$-morphism has been obtained by applying an explicit version of the homotopy transfer theorem. Finally
Externí odkaz:
http://arxiv.org/abs/2202.08750
Autor:
Schnitzer, Jonas1 (AUTHOR) jonas.schnitzer@math.uni-freiburg.de
Publikováno v:
Communications in Analysis & Mechanics (CAM). 2024, Vol. 16 Issue 3, p1-9. 9p.
Adopting the omni-Lie algebroid approach to Dirac-Jacobi structures, we propose and investigate a notion of weak dual pairs in Dirac-Jacobi geometry. Their main motivating examples arise from the theory of multiplicative precontact structures on Lie
Externí odkaz:
http://arxiv.org/abs/2109.08037
Autor:
KRAFT, ANDREAS1 kraft.a@protonmail.com, SCHNITZER, JONAS1 jonas.schnitzer@math.uni-freiburg.de
Publikováno v:
Homology, Homotopy & Applications. 2024, Vol. 26 Issue 1, p201-227. 27p.
Autor:
Kraft, Andreas, Schnitzer, Jonas
The global formality of Dolgushev depends on the choice of a torsion-free covariant derivative. We prove that the globalized formalities with respect to two different covariant derivatives are homotopic. More explicitly, we derive the statement by pr
Externí odkaz:
http://arxiv.org/abs/2102.10645
In this paper we propose a reduction scheme for multivector fields phrased in terms of $L_\infty$-morphisms. Using well-know geometric properties of the reduced manifolds we perform a Taylor expansion of multivector fields, which allows us to built u
Externí odkaz:
http://arxiv.org/abs/2004.10662