Zobrazeno 1 - 10
of 122
pro vyhledávání: '"SCHMITT, PHILIPP"'
Autor:
Ewert, Eske, Schmitt, Philipp
In this article, we develop a calculus of Shubin type pseudodifferential operators on certain non-compact spaces, using a groupoid approach similar to the one of van Erp and Yuncken. More concretely, we consider actions of graded Lie groups on graded
Externí odkaz:
http://arxiv.org/abs/2407.14347
Autor:
Schmitt, Philipp, Schötz, Matthias
We prove a noncommutative real Nullstellensatz for 2-step nilpotent Lie algebras that extends the classical, commutative real Nullstellensatz as follows: Instead of the real polynomial algebra $\mathbb R[x_1, \dots, x_d]$ we consider the universal en
Externí odkaz:
http://arxiv.org/abs/2403.06773
To economically deploy robotic manipulators the programming and execution of robot motions must be swift. To this end, we propose a novel, constraint-based method to intuitively specify sequential manipulation tasks and to compute time-optimal robot
Externí odkaz:
http://arxiv.org/abs/2208.09219
Autor:
Barmeier, Severin, Schmitt, Philipp
Publikováno v:
Communications in Mathematical Physics 398, 1085-1127 (2023)
We show how combinatorial star products can be used to obtain strict deformation quantizations of polynomial Poisson structures on $\mathbb R^d$, generalizing known results for constant and linear Poisson structures to polynomial Poisson structures o
Externí odkaz:
http://arxiv.org/abs/2201.03249
Autor:
Schmitt, Philipp, Schötz, Matthias
We give a non-commutative Positivstellensatz for CP^n: The (commutative) *-algebra of polynomials on the real algebraic set CP^n with the pointwise product can be realized by phase space reduction as the U(1)-invariant polynomials on C^{1+n}, restric
Externí odkaz:
http://arxiv.org/abs/2110.03437
Autor:
Schmitt, Philipp, Schötz, Matthias
We develop a general theory of symmetry reduction of states on (possibly non-commutative) *-algebras that are equipped with a Poisson bracket and a Hamiltonian action of a commutative Lie algebra $g$. The key idea advocated for in this article is tha
Externí odkaz:
http://arxiv.org/abs/2107.04900
Autor:
Schmitt, Philipp, Schötz, Matthias
We study formal and non-formal deformation quantizations of a family of manifolds that can be obtained by phase space reduction from $\mathbb{C}^{1+n}$ with the Wick star product in arbitrary signature. Two special cases of such manifolds are the com
Externí odkaz:
http://arxiv.org/abs/1911.12118
Autor:
Schmitt, Philipp
We obtain a family of strict $\hat G$-invariant products on the space of holomorphic functions on a semisimple coadjoint orbit of a complex connected semisimple Lie group $\hat G$. By restriction, we also obtain strict $G$-invariant products $*_\hbar
Externí odkaz:
http://arxiv.org/abs/1907.03185
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Wirnshofer, Florian, Schmitt, Philipp S., Feiten, Wendelin, Wichert, Georg v., Burgard, Wolfram
In automated manufacturing, robots must reliably assemble parts of various geometries and low tolerances. Ideally, they plan the required motions autonomously. This poses a substantial challenge due to high-dimensional state spaces and non-linear con
Externí odkaz:
http://arxiv.org/abs/1811.03904