Zobrazeno 1 - 10
of 88
pro vyhledávání: '"SCARDIA, LUCIA"'
In this paper we consider shape optimisation problems for sets of prescribed mass, where the driving energy functional is nonlocal and anisotropic. More precisely, we deal with the case of attractive/repulsive interactions in two and three dimensions
Externí odkaz:
http://arxiv.org/abs/2401.14485
In this paper we study the convergence of integral functionals with $q$-growth in a randomly perforated domain of $\mathbb R^n$, with $1
Externí odkaz:
http://arxiv.org/abs/2307.11605
In this paper we consider a general class of anisotropic energies in three dimensions and give a complete characterisation of their minimisers. We show that, depending on the Fourier transform of the interaction potential, the minimiser is either the
Externí odkaz:
http://arxiv.org/abs/2210.06797
In this paper we characterise the minimiser for a class of nonlocal perturbations of the Coulomb energy. We show that the minimiser is the normalised characteristic function of an ellipsoid, under the assumption that the perturbation kernel has the s
Externí odkaz:
http://arxiv.org/abs/2112.14136
In this paper we study the deterministic and stochastic homogenisation of free-discontinuity functionals under \emph{linear} growth and coercivity conditions. The main novelty of our deterministic result is that we work under very general assumptions
Externí odkaz:
http://arxiv.org/abs/2101.04174
In this paper we study the asymptotic behaviour of a family of random free-discontinuity energies $E_\varepsilon$ defined on a randomly perforated domain, as $\varepsilon$ goes to zero. The functionals $E_\varepsilon$ model the energy associated to d
Externí odkaz:
http://arxiv.org/abs/2002.01389
Publikováno v:
In Advances in Mathematics 1 December 2023 434
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We address the question of convergence of evolving interacting particle systems as the number of particles tends to infinity. We consider two types of particles, called positive and negative. Same-sign particles repel each other, and opposite-sign pa
Externí odkaz:
http://arxiv.org/abs/1810.04934
We prove a homogenization result for Mumford-Shah-type energies associated to a brittle composite material with weak inclusions distributed periodically at a scale ${\varepsilon}>0$. The matrix and the inclusions in the material have the same elastic
Externí odkaz:
http://arxiv.org/abs/1807.08705