Zobrazeno 1 - 10
of 284
pro vyhledávání: '"SANDI KLAVŽAR"'
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Vol 21, Iss 3, Pp 225-231 (2024)
Irregular convex triangular networks consist of the interior of a 6-sided convex polygon drawn on the infinite triangular network. Formal description of these applicable networks is provided. In the main result it is proved that the metric dimension
Externí odkaz:
https://doaj.org/article/f00596b152944e99abca782b4a6d449d
Publikováno v:
Heliyon, Vol 10, Iss 3, Pp e24814- (2024)
Supramolecular chemistry explores non-covalent interactions between molecules, and it has facilitated the design of functional materials and understanding of molecular self-assembly processes. We investigate a captivating class of supramolecular stru
Externí odkaz:
https://doaj.org/article/626dc5fe0496495bb4094ed7edb8cfd7
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol vol. 25:2, Iss Graph Theory (2023)
In the Maker-Breaker domination game played on a graph $G$, Dominator's goal is to select a dominating set and Staller's goal is to claim a closed neighborhood of some vertex. We study the cases when Staller can win the game. If Dominator (resp., Sta
Externí odkaz:
https://doaj.org/article/c0edcc97560e4659881534e13b7f41de
Autor:
Jing Tian, Sandi Klavžar
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 44, Iss 4, p 1277 (2024)
Externí odkaz:
https://doaj.org/article/ee6b4d63c23a4811a8aab4b0da5feb13
Publikováno v:
Discrete Mathematics Letters, Vol 9, Pp 49-56 (2022)
Externí odkaz:
https://doaj.org/article/c081ad49a65d4969855be75e7c90db5b
Publikováno v:
Opuscula Mathematica, Vol 41, Iss 4, Pp 453-464 (2021)
The (total) connected domination game on a graph \(G\) is played by two players, Dominator and Staller, according to the standard (total) domination game with the additional requirement that at each stage of the game the selected vertices induce a co
Externí odkaz:
https://doaj.org/article/6b151fbeaa5f48c4820b2e7111b2bfd1
Autor:
Sandi Klavžar, Douglas F. Rall
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol Vol. 21 no. 3, Iss Graph Theory (2019)
The packing chromatic number $\chi_{\rho}(G)$ of a graph $G$ is the smallest integer $k$ such that the vertex set of $G$ can be partitioned into sets $V_i$, $i\in [k]$, where vertices in $V_i$ are pairwise at distance at least $i+1$. Packing chromati
Externí odkaz:
https://doaj.org/article/b28f75f16b484e539bfb1466dc7463e2
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol Vol. 17 no. 1, Iss Graph Theory (2015)
Graph Theory
Externí odkaz:
https://doaj.org/article/f7c0074f02d6411aaeba1dc1b2961c77
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol Vol. 17 no. 1, Iss Graph Theory (2015)
Graph Theory
Externí odkaz:
https://doaj.org/article/2596305d24c64cf193710d29ae17c424
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol Vol. 12 no. 3, Iss Graph and Algorithms (2010)
Graphs and Algorithms
Externí odkaz:
https://doaj.org/article/26b359d9b75147d6b3e950b4ae7f5613