Zobrazeno 1 - 10
of 359
pro vyhledávání: '"SAHA, KOUSHIK"'
An $N \times N$ generalized patterned random matrix is a symmetric matrix defined as $A=(x_{L(i,j)}\mathbf{1}_{\Delta}(i,j))$, where $\{x_k; k \in \mathbb{Z}^d\}$ is known as the input sequence, $L:\{1,2,\ldots, N\}^2 \rightarrow \mathbb{Z}^d$ is kno
Externí odkaz:
http://arxiv.org/abs/2402.03745
Publikováno v:
J. Math. Phys. 64, 123302 (2023)
This article focuses on the fluctuations of linear eigenvalue statistics of $T_{n\times p}T'_{n\times p}$, where $T_{n\times p}$ is an $n\times p$ Toeplitz matrix with real, complex or time-dependent entries. We show that as $n \rightarrow \infty$ an
Externí odkaz:
http://arxiv.org/abs/2305.02808
Linial-Meshulam complex is a random simplicial complex on $n$ vertices with a complete $(d-1)$-dimensional skeleton and $d$-simplices occurring independently with probability p. Linial-Meshulam complex is one of the most studied generalizations of th
Externí odkaz:
http://arxiv.org/abs/2301.09062
This article focuses on linear eigenvalue statistics of Hankel matrices with independent entries. Using the convergence of moments we show that the linear eigenvalue statistics of Hankel matrices for odd degree monomials with degree greater than or e
Externí odkaz:
http://arxiv.org/abs/2209.08252
Publikováno v:
Random Matrices: Theory and Applications 10, 2150030 (2021)
Patterned random matrices such as the reverse circulant, the symmetric circulant, the Toeplitz and the Hankel matrices and their almost sure limiting spectral distribution (LSD), have attracted much attention. Under the assumption that the entries ar
Externí odkaz:
http://arxiv.org/abs/2203.05837
Publikováno v:
In International Journal of Sediment Research August 2024 39(4):560-575
Autor:
Das, Ananta Kumar, Paul, Prosenjit, Pranto, Mahian Parveg, Hassan, Md. Jahid, Saha, Koushik, Hossain, Md. Emdad
Publikováno v:
In European Journal of Medicinal Chemistry Reports April 2024 10
The scaled standard Wigner matrix (symmetric with mean zero, variance one i.i.d. entries), and its limiting eigenvalue distribution, namely the semi-circular distribution, has attracted much attention. The $2k$th moment of the limit equals the number
Externí odkaz:
http://arxiv.org/abs/2103.09443
Consider the $n \times n$ reverse circulant $RC_n(t)$ and symmetric circulant $SC_n(t)$ matrices with independent Brownian motion entries. We discuss the process convergence of the time dependent fluctuations of linear eigenvalue statistics of these
Externí odkaz:
http://arxiv.org/abs/2010.05152
Autor:
Maurya, Shambhu Nath, Saha, Koushik
In this article, we study the fluctuations of linear eigenvalue statistics of reverse circulant $(RC_n)$ matrices with independent entries which satisfy some moment conditions. We show that $\frac{1}{\sqrt{n}} \text{Tr} \phi(RC_n)$ obey the central l
Externí odkaz:
http://arxiv.org/abs/2005.00984