Zobrazeno 1 - 10
of 35
pro vyhledávání: '"S2P"'
Publikováno v:
Journal of Translational Medicine, Vol 19, Iss 1, Pp 1-16 (2021)
Abstract The MBTPS2 gene on the X-chromosome encodes the membrane-bound transcription factor protease, site-2 (MBTPS2) or site-2 protease (S2P) which cleaves and activates several signaling and regulatory proteins from the membrane. The MBTPS2 is cri
Externí odkaz:
https://doaj.org/article/2cb1e43ef48441afa70ab94f1372e457
Autor:
Thomas Kupke, Rabea M. Götz, Florian M. Richter, Rainer Beck, Fabio Lolicato, Walter Nickel, Carsten Hopf, Britta Brügger
Publikováno v:
Communications Biology. 6
Regulated intramembrane proteolysis (RIP) describes the protease-dependent cleavage of transmembrane proteins within the hydrophobic core of cellular membranes. Intramembrane-cleaving proteases (I-CliPs) that catalyze these reactions are found in all
Publikováno v:
New Phytologist, 2015 Oct 01. 208(1), 188-197.
Externí odkaz:
https://www.jstor.org/stable/newphytologist.208.1.188
Cleavage of RseA by RseP Requires a Carboxyl-Terminal Hydrophobic Amino Acid following DegS Cleavage
Autor:
Li, Xiaochun, Wang, Boyuan, Feng, Lihui, Kang, Hui, Qi, Yang, Wang, Jiawei, Shi, Yigong, Rudner, David Z.
Publikováno v:
Proceedings of the National Academy of Sciences of the United States of America, 2009 Sep 01. 106(35), 14837-14842.
Externí odkaz:
https://www.jstor.org/stable/40484516
Autor:
Tyler Stephens, Yaroslav Tsybovsky, Tracy Liu, Shuishu Wang, Tongqing Zhou, Baoshan Zhang, Alexandra Nazzari, Peter D. Kwong, Cuiping Liu, Wing-Pui Kong, Yi Zhang, Eun Sung Yang, John R. Mascola, Lingshu Wang, Kwan Leung, I-Ting Teng, Steven J. Chen, Li Ou, Adam S. Olia
Publikováno v:
The Journal of Biological Chemistry
The SARS-CoV-2 spike is the primary target of virus-neutralizing antibodies and critical to the development of effective vaccines against COVID-19. Here, we demonstrate that the prefusion-stabilized two-proline "S2P" spike -widely employed for labora
Publikováno v:
Molecular Metabolism
Molecular Metabolism, Vol 27, Iss, Pp S69-S80 (2019)
Molecular Metabolism, Vol 27, Iss, Pp S69-S80 (2019)
Background A growing body of literature suggests the cell–intrinsic activity of Atf6α during ER stress responses has implications for tissue cell number during growth and development, as well as in adult biology and tumorigenesis [1]. This concept
Publikováno v:
Journal of Translational Medicine
Journal of Translational Medicine, Vol 19, Iss 1, Pp 1-16 (2021)
Journal of Translational Medicine, Vol 19, Iss 1, Pp 1-16 (2021)
TheMBTPS2gene on the X-chromosome encodes the membrane-bound transcription factor protease, site-2 (MBTPS2) or site-2 protease (S2P) which cleaves and activates several signaling and regulatory proteins from the membrane. The MBTPS2 is critical for a
Publikováno v:
Biochemistry and Biophysics Reports
Biochemistry and Biophysics Reports, Vol 22, Iss, Pp-(2020)
Biochemistry and Biophysics Reports, Vol 22, Iss, Pp-(2020)
The oxysterol 25-hydroxycholesterol (25-HC) has diverse physiological activities, including the ability to inhibit anchorage-independent growth of colorectal cancer cells. Here, we found that a polyamine synthesis inhibitor, DFMO, prevented 25-HC-ind
Publikováno v:
Redox Biology, Vol 25, Iss, Pp-(2019)
Redox Biology
Redox Biology
Endoplasmic reticulum (ER) is a dynamic organelle orchestrating the folding and post-translational maturation of almost all membrane proteins and most secreted proteins. These proteins synthesized in the ER, need to form disulfide bridge to acquire s
Autor:
Mollereau, B., Rzechorzek, N. M., Roussel, B. D., Sedru, M., Brink, D., Bailly-Maitre, B., Palladino, F., Medinas, D. B., Domingos, P. M., Hunot, S., Chandran, S., Birman, S., Baron, T., Vivien, D., Duarte, C. B., Ryoo, H. D., Steller, H., Urano, F., Chevet, E., Kroemer, G., Ciechanover, A., Calabrese, E. J., Kaufman, R. J., Hetz, C
Publikováno v:
Brain Research
Brain Research, Elsevier, 2016, 1648 (B), pp.603-616. 〈10.1016/j.brainres.2016.02.033〉
Brain Research, Elsevier, 2016, 1648 (B), pp.603-616. ⟨10.1016/j.brainres.2016.02.033⟩
Mollereau, B, Rzechorzek, N M, Roussel, BD, Sedru, M, Van denBrink, D, Bailly-Maitre, B, Palladino, F, Medinas, DB, Domingos, PM, Hunot, S, Chandran, S, Birman, S, Baron, T, Vivien, D, Duarte, CB, Ryoo, HD, Steller, H, Urano, F, Chevet, E, Kroemer, G, Ciechanover, A, Calabrese, EJ, Kaufman, RJ & Hetz, C 2016, ' Adaptive preconditioning in neurological diseases- therapeutic insights from proteostatic perturbations ', Brain Research . https://doi.org/10.1016/j.brainres.2016.02.033
Brain Research, Elsevier, 2016, 1648 (B), pp.603-616. 〈10.1016/j.brainres.2016.02.033〉
Brain Research, Elsevier, 2016, 1648 (B), pp.603-616. ⟨10.1016/j.brainres.2016.02.033⟩
Mollereau, B, Rzechorzek, N M, Roussel, BD, Sedru, M, Van denBrink, D, Bailly-Maitre, B, Palladino, F, Medinas, DB, Domingos, PM, Hunot, S, Chandran, S, Birman, S, Baron, T, Vivien, D, Duarte, CB, Ryoo, HD, Steller, H, Urano, F, Chevet, E, Kroemer, G, Ciechanover, A, Calabrese, EJ, Kaufman, RJ & Hetz, C 2016, ' Adaptive preconditioning in neurological diseases- therapeutic insights from proteostatic perturbations ', Brain Research . https://doi.org/10.1016/j.brainres.2016.02.033
In neurological disorders, both acute and chronic neural stress can disrupt cellular proteostasis, resulting in the generation of pathological protein. However in most cases, neurons adapt to these proteostatic perturbations by activating a range of