Zobrazeno 1 - 10
of 280
pro vyhledávání: '"S.A. Dyer"'
Autor:
Arfin, Rishad1 (AUTHOR) mbakr@mcmaster.ca, Niegemann, Jens2 (AUTHOR) jens.niegemann@ansys.com, McGuire, Dylan2 (AUTHOR) dylan.mcguire@ansys.com, Bakr, Mohamed H.1 (AUTHOR)
Publikováno v:
Sensors (14248220). Dec2024, Vol. 24 Issue 23, p7693. 23p.
Autor:
Taka, Masashi1 (AUTHOR) shin@kem.biglobe.ne.jp, Toyoshima, Shinichiro1 (AUTHOR), Takamatsu, Shigeyuki2 (AUTHOR) shigerad@staff.kanazawa-u.ac.jp, Kobayashi, Satoshi2 (AUTHOR) satoshik@staff.kanazawa-u.ac.jp
Publikováno v:
Current Oncology. Nov2024, Vol. 31 Issue 11, p7117-7128. 12p.
Autor:
Masnikosa, Romana1 (AUTHOR) david.piric@vin.bg.ac.rs, Cvetković, Zorica2,3 (AUTHOR) romana@vin.bg.ac.rs, Pirić, David1 (AUTHOR)
Publikováno v:
International Journal of Molecular Sciences. Nov2024, Vol. 25 Issue 21, p11384. 90p.
Autor:
S.A. Dyer
Publikováno v:
IEEE Instrumentation and Measurement Magazine. 9:48-52
Autor:
S.A. Dyer
Publikováno v:
IEEE Instrumentation & Measurement Magazine. 9:6-10
Publikováno v:
IEEE Instrumentation & Measurement Magazine. 4:46-51
In the last two columns, we looked at one approach to approximation, interpolating a set of points by piecewise-cubic polynomials forming a cubic spline. We now look at another approach - one that involves fitting a curve to a set of data without res
Publikováno v:
IEEE Instrumentation & Measurement Magazine. 3:30-34
The bilinear transformation (BLT) is useful to instrumentation and design engineers in many settings. Two examples are: in the modeling of continuous-time (CT) systems via digital computer and in the design of digital infinite-impulse-response filter
Publikováno v:
IEEE Instrumentation & Measurement Magazine. 11:47-49
Integration is a smoothing operation, and numerical integration is, in its essence, a stable operation. Many formulas (or rules) exist. The most basic of these is the so-called rectangular rule, which effectively amounts to a Riemann sum with finite
Publikováno v:
IEEE Instrumentation & Measurement Magazine. 2:43-46
Previously we discussed the representation and evaluation of polynomials and rational functions in a structured language such as C. Along with an introduction to representing complex numbers and doing complex arithmetic, we have gathered enough basic
Autor:
S.A. Dyer
Publikováno v:
IEEE Instrumentation & Measurement Magazine. 10:40-42
For pt.I see ibid., vol.9, p.13-15, (2006). In this article the author has listed the basic steps in computing the inverse Laplace transform of a rational function H(s).