Zobrazeno 1 - 10
of 39
pro vyhledávání: '"S. V. Konyagin"'
Autor:
S. V. Konyagin, M. A. Korolev
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 319:169-188
Autor:
S. V. Konyagin
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 319:S156-S161
Autor:
S. V. Konyagin, A. Yu. Shadrin
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 315:S178-S191
Autor:
P. A. Borodin, I. A. Ibragimov, B. S. Kashin, V. V. Kozlov, A. V. Kolesnikov, S. V. Konyagin, E. D. Kosov, O. G. Smolyanov, N. A. Tolmachev, D. V. Treshchev, A. V. Shaposhnikov, S. V. Shaposhnikov, A. N. Shiryaev, A. A. Shkalikov
Publikováno v:
Russian Mathematical Surveys. 76:1149-1157
Autor:
S. V. Konyagin
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 314:90-95
A sequence $$(x_1,x_2,\dots,x_{N+d})$$ of numbers in $$[0,1)$$ is said to be $$N$$ -regular with at most $$d$$ irregularities if for every $$n=1,\dots,N$$ each of the intervals $$[0,1),[1,2),\dots,[n-1,n)$$ contains at least one element of the sequen
Autor:
V. Yu. Protasov, S. V. Konyagin
Publikováno v:
Sibirskii matematicheskii zhurnal. 62:803-806
Autor:
S. V. Konyagin, V. Yu. Protasov
Publikováno v:
Siberian Mathematical Journal. 62:654-656
Autor:
S. V. Konyagin, M. A. Korolev
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 294:67-77
An asymptotic formula is obtained for the number of solutions to a symmetric Diophantine equation with reciprocals, and its applications to problems related to the distribution of values of short Kloosterman sums are presented.
Autor:
I. D. Shkredov, S. V. Konyagin
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 294:78-88
We improve previous sum–product estimates in ℝ; namely, we prove the inequality max{|A + A|, |AA|} ≫ |A|4/3+c, where c is any number less than 5/9813. New lower bounds for sums of sets with small product set are found. We also obtain results on
Autor:
A. A. Kuleshov, S. V. Konyagin
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 293:186-193
Necessary conditions are established for the continuity of finite sums of ridge functions defined on convex subsets E of the space R n . It is shown that under some constraints imposed on the summed functions ϕ i , in the case when E is open, the co