Zobrazeno 1 - 10
of 166
pro vyhledávání: '"S. Southworth"'
Publikováno v:
SIAM Journal on Scientific Computing. :S281-S306
Publikováno v:
SIAM Journal on Scientific Computing. 44:A636-A663
Fully implicit Runge-Kutta (IRK) methods have many desirable accuracy and stability properties as time integration schemes, but high-order IRK methods are not commonly used in practice with large-scale numerical PDEs because of the difficulty of solv
Autor:
Emily S. Martin, Jennifer L. Whitten, Simon A. Kattenhorn, Geoffrey C. Collins, Ben S. Southworth, Lindsey S. Wiser, Shannen Prindle
Publikováno v:
Icarus. 392:115369
Publikováno v:
Nuclear Science and Engineering. 194:989-1008
The computational kernel in solving the SN transport equations is the parallel sweep, which corresponds to directly inverting a block lower triangular linear system that arises in discretizations o...
Publikováno v:
SIAM Journal on Matrix Analysis and Applications. 41:871-900
The solution of matrices with $2\times 2$ block structure arises in numerous areas of computational mathematics, such as PDE discretizations based on mixed-finite element methods, constrained optimization problems, or the implicit or steady state tre
Autor:
Andreas Hessenthaler, Oliver Röhrle, Ben S. Southworth, Jacob B. Schroder, Robert D. Falgout, David Nordsletten
Publikováno v:
SIAM Journal on Scientific Computing. 42:A771-A796
This paper presents a multilevel convergence framework for multigrid-reduction-in-time (MGRIT) as a generalization of previous two-grid estimates. The framework provides a priori upper bounds on the convergence of MGRIT V- and F-cycles, with differen
Publikováno v:
SIAM Journal on Scientific Computing. 42:B1271-B1301
This paper derives and analyzes new diffusion synthetic acceleration (DSA) preconditioners for the $S_N$ transport equation when discretized with a high-order (HO) discontinuous Galerkin (DG) discr...
Autor:
Milan Holec, Ben Zhu, Ilon Joseph, Christopher J. Vogl, Ben S. Southworth, Alejandro Campos, Andris Dimits, Will Pazner
Maintaining conservation laws in the fully discrete setting is critical for accurate long-time behavior of numerical simulations and requires accounting for discrete conservation properties in both space and time. This paper derives arbitrary order f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::92357de2237f6e16c8a45414948695b0
http://arxiv.org/abs/2202.13022
http://arxiv.org/abs/2202.13022
Parallel-in-time methods have become increasingly popular in the simulation of time-dependent numerical PDEs, allowing for the efficient use of additional MPI processes when spatial parallelism saturates. Most methods treat the solution and paralleli
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2efd00787cbeec059650e7fb7ae653ea
https://doi.org/10.1137/21m1390773
https://doi.org/10.1137/21m1390773
Autor:
Peter G. Maginot, Vladimir Tomov, Ben S. Southworth, Terry S. Haut, T S Bailey, Thomas A. Brunner
Publikováno v:
Nuclear Science and Engineering. 193:746-759
We propose a graph-based sweep algorithm for solving the steady-state, monoenergetic discrete ordinates on meshes of high-order (HO) curved mesh elements. Our spatial discretization consists of arb...