Zobrazeno 1 - 10
of 1 628
pro vyhledávání: '"S. Sivaprasad"'
Autor:
Kumar, S. Sivaprasad, Giri, Surya
We introduce and study a class of starlike functions associated with the non-convex domain \[ \mathcal{S}^*_{nc} = \left\{ f \in \mathcal{A} : \frac{z f'(z)}{f(z)} \prec \frac{1+z}{\cos{z}} =: \varphi_{nc}(z), \;\; z \in \mathbb{D} \right\}. \] Key r
Externí odkaz:
http://arxiv.org/abs/2412.04819
Autor:
Kumar, S. Sivaprasad, Verma, Neha
In the present study, we consider two subclasses starlike and convex functions, denoted by $\mathcal{S}_{\mathcal{B}}^{*}$ and $\mathcal{C}_{\mathcal{B}}$ respectively, associated with a bean-shaped domain. Further, we estimate certain sharp initial
Externí odkaz:
http://arxiv.org/abs/2405.07995
Autor:
Kumar, S. Sivaprasad, Verma, Neha
This article presents several findings regarding second and third-order differential subordination of the form: $$ p(z)+\gamma_1 zp'(z)+\gamma_2 z^2p''(z)\prec h(z)\implies p(z)\prec e^z $$ and $$ p(z)+\gamma_1 zp'(z)+\gamma_2 z^2p''(z)+\gamma_3 z^3p
Externí odkaz:
http://arxiv.org/abs/2403.19712
Autor:
Verma, Neha, Kumar, S. Sivaprasad
In this paper, we employ a novel second and third-order differential subordination technique to establish the sufficient conditions for functions to belong to the classes $\mathcal{S}^*_s$ and $\mathcal{S}^*_{\rho}$, where $\mathcal{S}^*_s$ is the se
Externí odkaz:
http://arxiv.org/abs/2403.17563
Autor:
Kumar, S. Sivaprasad, Yadav, Pooja
In this paper, we introduce and explore a new class of starlike functions denoted by $\mathcal{S}^*_{\mathfrak{B}}$, defined as follows: $$\mathcal{S}^*_{\mathfrak{B}}=\{f\in \mathcal{A}:zf'(z)/f(z)\prec \sqrt{1+\tanh{z}}=:\mathfrak{B}(z)\}.$$ Here,
Externí odkaz:
http://arxiv.org/abs/2403.14162
Autor:
Kumar, S. Sivaprasad, Verma, Neha
In the present investigation, we introduce a new subclass of starlike functions defined by $\mathcal{S}^{*}_{\tau}:=\{f\in \mathcal{A}:zf'(z)/f(z) \prec 1+\arctan z=:\tau(z)\}$, where $\tau(z)$ maps the unit disk $\mathbb {D}:= \{z\in \mathbb{C}:|z|<
Externí odkaz:
http://arxiv.org/abs/2312.15266
Autor:
Verma, Neha, Kumar, S. Sivaprasad
This paper presents several results concerning second and third-order differential subordination for the class $\mathcal{S}^{*}_{e}:=\{f\in \mathcal{A}:zf'(z)/f(z)\prec e^z\}$, which represents the class of starlike functions associated with exponent
Externí odkaz:
http://arxiv.org/abs/2306.11215
Using differential subordination technique, such as Briot-Bouquet and others, we establish sufficient conditions for functions to be in a class $\mathcal{S}^{*}_{\varrho},$ consisting of starlike functions that are associated with $\varrho(z):=\cosh
Externí odkaz:
http://arxiv.org/abs/2304.02608
Autor:
Giri, Surya, Kumar, S. Sivaprasad
In this study, we deal with the sharp bounds of certain Toeplitz determinants whose entries are the logarithmic coefficients of analytic univalent functions $f$ such that the quantity $z f'(z)/f(z)$ takes values in a specific domain lying in the righ
Externí odkaz:
http://arxiv.org/abs/2303.14712
In the present investigation, we introduce and study the geometric properties of a class of analytic functions, associated with a parabolic region majorly lying in the left-half plane. Further we establish radius and majorization results for the clas
Externí odkaz:
http://arxiv.org/abs/2302.00889