Zobrazeno 1 - 10
of 26
pro vyhledávání: '"S. Safaeeyan"'
Autor:
S. Safaeeyan∗, N. Saboori Shirazi
Publikováno v:
Journal of Mathematical Extension, Vol 7, Iss 3, Pp 15-27 (2013)
The concept of essential submodules is a well known concept. In this paper we try to replace an arbitrary submodule of M, say T, instead of 0 in the definition of essential submodules. By this, essential submodules are precisely {0}-essential subm
Externí odkaz:
https://doaj.org/article/c7af3ed5b1334ec6b63d6837713185b1
Autor:
S. Safaeeyan
Publikováno v:
Journal of Mathematical Extension, Vol 5, Iss 2, Pp 67-74 (2011)
In this paper we extend the concepts of two sided ideal and right quasi-duo ring. These ideals and rings are called totally fully invariant and right strongly quasi-duo, respectively. Right strongly quasiduo rings are always right quasi-duo. We in
Externí odkaz:
https://doaj.org/article/6ec11ebd729c4ceab3cced755becac13
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Hokkaido Math. J. 49, no. 3 (2020), 463-479
Let $R$ be a ring and $M$ be an $R$-module. Two modules $A$ and $B$ are called orthogonal, written $A\perp B$, if they do not have non-zero isomorphic submodules. We associate a graph $\Gamma_{\bot}(M)$ to $M$ with vertices $\mathcal{M}_{\perp}=\{(0)
Autor:
A. Taherifar, S. Safaeeyan
Publikováno v:
Quaestiones Mathematicae. 42:717-732
Let R be a commutative ring. An ideal I of R is called a d-ideal (f d-ideal) provided that for each a ∈ I (finite subset F of I) and b ∈ R, Ann(a) ⊆ Ann(b) (Ann(F) ⊆ Ann(b)) implies that b ...
Publikováno v:
Journal of the Korean Mathematical Society. 51:87-98
Let R be a commutative ring with identity and M an R-module. In this paper, we associate a graph to M, say Γ(M), such thatwhen M = R, Γ(M) is exactly the classic zero-divisor graph. Many well-known results by D. F. Anderson and P. S. Livingston, in
Publikováno v:
Journal of Algebra and Its Applications. 19:2050078
In this paper, we introduce the concept of [Formula: see text]-semisimple modules. We prove that a multiplication reduced module is [Formula: see text]-semisimple if and only if it is a Baer module. We show that a large family of abelian groups are [
Publikováno v:
Communications in Algebra. 38:2832-2842
An R-module M is called strongly duo if Tr(N, M) = N for every N ≤ M R . Several equivalent conditions to being strongly duo are given. If M R is strongly duo and reduced, then End R (M) is a strongly regular ring and the converse is true when R is
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Mathematical Extension, Vol 3, Iss 1, Pp 95-105 (2008)
Let M and P be right R−modules. A submodule K of an R−module M is called P−dense if for each m ∈ M,(K : m) is a P−faithful right ideal of R. PR is nonsingular if and only if, for each R−module M, every essential submodule of M is a P−de