Zobrazeno 1 - 10
of 199
pro vyhledávání: '"S. Pulmannová"'
Autor:
S. Pulmannová, Elena Vinceková
Publikováno v:
Soft Computing. 20:3957-3967
We compare different notions of simultaneous measurability (compatibility) of observables on lattice $$\sigma $$ź-effect algebras and more generally, on $$\sigma $$ź-effect algebras that can be covered by $$\sigma $$ź-MV-algebras. We prove that ev
Autor:
S. Pulmannová, E. Vinceková
Publikováno v:
Fuzzy Sets and Systems. 260:62-76
Flaminio and Montagna (2008) enlarged the language of MV-algebras by a unary operation ?, called internal state or state operator, equationally defined so as to preserve the basic properties of a state in its usual meaning. The resulting class of MV-
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Reports on Mathematical Physics. 73:225-239
In the present paper, we deal with the question when an effect algebra, resp. a generalized effect algebra, can be represented in the projection lattice of a Hilbert space. We show that such representability is closely related to the existence of a r
Autor:
David J. Foulis, S. Pulmannová
Publikováno v:
Demonstratio Mathematica, Vol 47, Iss 1, Pp 1-21 (2014)
In this article, we study the center of a generalized effect algebra (GEA), relate it to the exocenter, and in case the GEA is centrally orthocomplete (a COGEA), relate it to the exocentral cover system. Our main results are that the center of a COGE
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
S. Pulmannová, Elena Vinceková
Publikováno v:
Soft Computing. 18:5-13
The notion of a state-morphism on pseudo-effect algebras is introduced, and pseudo-effect algebras with distinguished state-morphisms are studied under the name state-morphism pseudo-effect algebras (SMPEAs). It is shown that every SMPEA admits a rep
Autor:
S. Pulmannová
Publikováno v:
International Journal of Theoretical Physics. 52:2163-2170
It is shown that for every Archimedean MV-effect algebra M (equivalently, every Archimedean MV-algebra) there is an injective MV-algebra morphism into the MV-algebra of all multiplication operators between the zero and identity operator on \(\ell_{2}
Autor:
David J. Foulis, S. Pulmannová
Publikováno v:
Studia Logica. 100:1291-1315
An effect algebra is a partial algebraic structure, originally formulated as an algebraic base for unsharp quantum measurements. In this article we present an approach to the study of lattice effect algebras (LEAs) that emphasizes their structure as
Publikováno v:
Reports on Mathematical Physics. 69:311-320
For any dense linear subspace D of a complex Hilbert space H we introduce and study a D-weak operator topology τD on the set G D ( H ) of all positive linear operators with domain D. For instance, we show that every A ∈ G D ( H ) is τD-limit of a