Zobrazeno 1 - 10
of 96
pro vyhledávání: '"S. Lomov"'
Autor:
I. S. Lomov
Publikováno v:
Differential Equations. 58:1468-1481
Autor:
I. S. Lomov
Publikováno v:
Moscow University Computational Mathematics and Cybernetics. 46:140-148
Autor:
I. S. Lomov
Publikováno v:
Moscow University Computational Mathematics and Cybernetics. 45:168-173
Autor:
E. Syerko, T. Schmidt, D. May, C. Binetruy, S.G. Advani, S. Lomov, L. Silva, S. Abaimov, N. Aissa, I. Akhatov, M. Ali, N. Asiaban, G. Broggi, J. Bruchon, B. Caglar, H. Digonnet, J. Dittmann, S. Drapier, A. Endruweit, A. Guilloux, R. Kandinskii, A. Leygue, B. Mahato, P. Martínez-Lera, M. Matveev, V. Michaud, P. Middendorf, N. Moulin, L. Orgéas, C.H. Park, S. Rief, M. Rouhi, I. Sergeichev, M. Shakoor, O. Shishkina, Y. Swolfs, M. Tahani, R. Umer, K. Vanclooster, R. Vorobyev
Publikováno v:
Composites Part A: Applied Science and Manufacturing. 167:107397
Autor:
I. S. Lomov
Publikováno v:
Differential Equations. 55:787-805
Conditions are established under which the Bessel inequality, the Riesz basis property theorem, and the theorem about the unconditional basis property of the system of eigenfunctions and associated functions hold true for an ordinary second-order dif
Autor:
I. S. Lomov
Publikováno v:
Differential Equations. 55:471-482
for a second-order ordinary differential operator with integral boundary conditions on an interval of the real line, we derive conditions for the uniform convergence of the spectral expansion of a function in a series in the system of eigenfunctions
Autor:
I. S. Lomov
Publikováno v:
Complex Variables and Elliptic Equations. 64:792-803
Autor:
I. S. Lomov
Publikováno v:
Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics. 19:34-58
Autor:
I. S. Lomov, D. P. Emel’yanov
Publikováno v:
Differential Equations. 55:46-59
We solve a boundary value problem (problem E in the sense of M.V. Keldysh) for an irregularly degenerate elliptic operator in a rectangle. The exact solution of the problem is constructed as a series in the eigenfunctions of the limit operator. The m