Zobrazeno 1 - 10
of 11
pro vyhledávání: '"S. Fainleib"'
Autor:
A. S. Fainleib
Publikováno v:
Proceedings of the American Mathematical Society. 131:1601-1606
Measures of dispersion are characterized by the set of all bounded random variables whose dispersion is minimized when taken around the origin.
Autor:
Gad Bahir, Vissarion Mikhelashvili, A. Peer, Gadi Eisenstein, S. Fainleib, V. Garber, Meir Orenstein, Dan Ritter
Publikováno v:
Journal of Applied Physics. 85:6873-6883
We describe a parameter extraction technique for the simultaneous determination of physical parameters in nonideal Schottky barrier, p-n and p-i-n diodes. These include the ideality factor, saturation current, barrier height, and linear or nonlinear
Autor:
A. S. Fainleib
Publikováno v:
Journal of Theoretical Probability. 11:609-619
The purpose of this paper is to investigate small values of semi-additive functions and its application to find an upper bound of concentration functions for the sums of independent identically distributed random variables.
Autor:
M. I. Tulyaganova, A. S. Fainleib
Publikováno v:
Acta Mathematica Hungarica. 62:149-156
Let n be a given natura l number. Lattices of Z n are the cosets of any nonzero subgroup of the additive group Z". Each lattice A c__ Z" has the form ZkA + b, where 1 _ n/2 in Z ~. In the present work we drop this condition on the dimension but we de
Autor:
A. S. Fainleib
Publikováno v:
Mathematical Notes. 51:182-188
Autor:
A. S. Fainleib
Publikováno v:
Proceedings of the American Mathematical Society; 2002, Vol. 131 Issue 5, p1601-1606, 6p
Autor:
A. S. Fainleib
Publikováno v:
Journal of Soviet Mathematics. 17:2181-2191
One gives an application of Tauberian theorems to the problem of connection between the mean values of multiplicative functions for the cases when the argument runs through all natural numbers and all prime numbers, respectively.
Autor:
A. S. Fainleib, M. Orazov
Publikováno v:
Lithuanian Mathematical Journal. 18:575-583
Autor:
A S Fainleib, B V Levin
Publikováno v:
Russian Mathematical Surveys. 22:119-204
CONTENTSBasic notationIntroductionChapter I. Auxiliary lemmas § 1. The functions , , , and their properties § 2. Estimates for the solutions of some approximating integro-difference equations § 3. Asymptotic behaviour of the solutions of some diff
Autor:
A. S. Fainleib
Publikováno v:
Mathematical Notes of the Academy of Sciences of the USSR. 1:428-432