Zobrazeno 1 - 10
of 91
pro vyhledávání: '"S. D'Asero"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Didattica della Matematica, Iss 9, Pp 127-138 (2021)
In questo lavoro si presenta un modulo didattico dal titolo La Lingua Matematica, rivolto a studenti del primo anno di scuola secondaria di secondo grado.Il modulo è stato presentato in classi di Liceo Matematico, ma può essere proposto anche in al
This paper deals with the existence of bounded and locally Hölder continuous weak solutions of a homogeneous Dirichlet problem related to a class of nonlinear fourth-order elliptic equations with strengthened degenerate ellipticity condition.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::19efc59a5eea495c608918d2c20cfc0a
https://hdl.handle.net/20.500.11769/532837
https://hdl.handle.net/20.500.11769/532837
This update and revision of the international guideline for urticaria was developed following the methods recommended by Cochrane and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) working group. It is a joint initiativ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2127::56606c41469ed062f562cd776f346379
https://pergamos.lib.uoa.gr/uoa/dl/object/uoadl:2999603
https://pergamos.lib.uoa.gr/uoa/dl/object/uoadl:2999603
Purpose: Patients with chronic spontaneous urticaria (CSU) have an increased risk for comorbid autoimmune diseases. In this retrospective multicenter study of CSU patients, we evaluated clinical and laboratory features of CSU associated with a higher
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2127::b740521a5dda395a40506a60b7fdd1b6
https://pergamos.lib.uoa.gr/uoa/dl/object/uoadl:3003239
https://pergamos.lib.uoa.gr/uoa/dl/object/uoadl:3003239
We study the existence of a weak solution u of the following nonlinear vectorial Dirichlet problem { u ∈ W 0 1 , 2 ( Ω , R N ) − ∑ i = 1 n D i A i ν ( x , u , D u ) = − ∑ i = 1 n D i ( ∑ j = 1 N E i ν j ( x ) u j ) + f ν ( x ) x ∈
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::35de33980ab32fdea97d1b70c67e5e53
http://hdl.handle.net/20.500.11769/461381
http://hdl.handle.net/20.500.11769/461381
Publikováno v:
Advances in Nonlinear Analysis, Vol 9, Iss 1, Pp 1333-1350 (2019)
We consider the following boundary value problem $$\begin{array}{} \displaystyle \begin{cases} - {\rm div}{[M(x)\nabla u - E(x) u]} =f(x) & \text{in}~~ {\it\Omega} \\ u =0 & \text{on}~~ \partial{\it\Omega}, \end{cases} \end{array}$$ where Ω is a bou
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::68adbb2cdb8c09ff33292645d1d55133
http://hdl.handle.net/20.500.11769/359823
http://hdl.handle.net/20.500.11769/359823
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Mathematical Methods in the Applied Sciences. 41:261-269