Zobrazeno 1 - 10
of 45
pro vyhledávání: '"S. A. Seyed Fakhari"'
Autor:
S. A. Seyed Fakhari
Publikováno v:
Mathematics, Vol 7, Iss 7, p 607 (2019)
In 1982, Stanley predicted a combinatorial upper bound for the depth of any finitely generated multigraded module over a polynomial ring. The predicted invariant is now called the Stanley depth. Duval et al. found a counterexample for Stanley’s con
Externí odkaz:
https://doaj.org/article/d42414b508ee4d01b7ded80f5184103c
Autor:
S. A. Seyed Fakhari
Publikováno v:
Collectanea Mathematica.
Autor:
S. A. Seyed Fakhari
Publikováno v:
Communications in Algebra. 50:4040-4048
Autor:
S. A. Seyed Fakhari
Publikováno v:
MATHEMATICA SCANDINAVICA. 129
Assume that $G$ is a graph with edge ideal $I(G)$ and let $I(G)^{(s)}$ denote the $s$-th symbolic power of $I(G)$. It is proved that for every integer $s\geq 1$, $$ \mathrm{reg} (I(G)^{(s+1)})\leq \max \bigl \{\mathrm{reg} (I(G))$$ $$+2s, \mathrm{reg
Autor:
S. A. Seyed Fakhari
Publikováno v:
Kyoto Journal of Mathematics. 62
Publikováno v:
Research in the Mathematical Sciences. 9
Autor:
S. A. Seyed Fakhari
Publikováno v:
Communications in Algebra. 48:5215-5223
A Cameron-Walker graph is a graph for which the matching number and the induced matching number are the same. Assume that G is a Cameron-Walker graph with edge ideal I(G), and let ind‐match(G) be t...
Autor:
S. A. Seyed Fakhari
Publikováno v:
Journal of Algebra. 541:345-358
Let G be a unicyclic graph with edge ideal I ( G ) . For any integer s ≥ 1 , we denote the s-th symbolic power of I ( G ) by I ( G ) ( s ) . It is shown that reg ( I ( G ) ( s ) ) = reg ( I ( G ) s ) , for every s ≥ 1 .
Autor:
S. A. Seyed Fakhari
Publikováno v:
Proceedings of the American Mathematical Society. 148:1849-1862
Let K \mathbb {K} be a field and let S = K [ x 1 , … , x n ] S=\mathbb {K}[x_1,\dots ,x_n] be the polynomial ring in n n variables over K \mathbb {K} . Assume that I ⊂ S I\subset S is a squarefree monomial ideal. For every integer k ≥ 1 k\geq 1
Autor:
S. A. Seyed Fakhari
Publikováno v:
Collectanea Mathematica. 70:447-459
Let $${\mathbb {K}}$$ be a field and $$S={\mathbb {K}}[x_1,\ldots ,x_n]$$ be the polynomial ring in n variables over $${\mathbb {K}}$$ . For any monomial ideal I, we denote its integral closure by $${\overline{I}}$$ . Assume that G is a graph with ed