Zobrazeno 1 - 10
of 63
pro vyhledávání: '"S. A. Mohiuddine"'
Autor:
Md. Nasiruzzaman, Mohammad Dilshad, S. A. Mohiuddine, Bader Mufadhi Eid Albalawi, Mohammad Rehan Ajmal
Publikováno v:
Journal of Inequalities and Applications, Vol 2024, Iss 1, Pp 1-21 (2024)
Abstract In this paper, we attempt to use the Dunkl analog to study the convergence properties of q-Phillips operators by using the q-Appell polynomials. By applying the new sequences of continuous functions ν s , q ( z ) = ( z − 1 2 [ s ] q ) ϱ
Externí odkaz:
https://doaj.org/article/49f6725916fd4f359c3f474c0a743f3b
Publikováno v:
Journal of Mathematics, Vol 2023 (2023)
We develop new Banach sequence spaces e0a,bp,q and eca,bp,q derived by the domain of generalized p,q-Euler matrix Ea,bp,q in the spaces of null and convergent sequences, respectively. We investigate some topological properties and inclusion natures r
Externí odkaz:
https://doaj.org/article/fead792172c14899b7648943eaf7bf5d
Publikováno v:
Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-14 (2021)
Abstract In this work, we construct the genuine Durrmeyer–Stancu type operators depending on parameter α in [ 0 , 1 ] $[0,1]$ as well as ρ > 0 $\rho >0$ and study some useful basic properties of the operators. We also obtain Grüss–Voronovskaja
Externí odkaz:
https://doaj.org/article/10858a90a1474d5abe411c73ea3aefa4
Autor:
S. A. Mohiuddine
Publikováno v:
Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-17 (2020)
Abstract We construct the bivariate form of Bernstein–Schurer operators based on parameter α. We establish the Voronovskaja-type theorem and give an estimate of the order of approximation with the help of Peetre’s K-functional of our newly defin
Externí odkaz:
https://doaj.org/article/57706f98111149f88d37775714856ad1
Publikováno v:
Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-19 (2020)
Abstract In this article we introduce the generalized Fibonacci difference operator F ( B ) $\mathsf{F}(\mathsf{B})$ by the composition of a Fibonacci band matrix F and a triple band matrix B ( x , y , z ) $\mathsf{B}(x,y,z)$ and study the spaces ℓ
Externí odkaz:
https://doaj.org/article/fe694ce930074734b83c7cc89e1350a0
Publikováno v:
Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-12 (2020)
Abstract In this work, we construct a Durrmeyer type modification of the τ-Baskakov operators depends on two parameters α > 0 $\alpha >0$ and τ ∈ [ 0 , 1 ] $\tau \in [0,1]$ . We derive the rate of approximation of these operators in a weighted s
Externí odkaz:
https://doaj.org/article/27821b9be0734c50ad1b4c5524152297
Publikováno v:
AIMS Mathematics, Vol 5, Iss 1, Pp 650-672 (2020)
In the proposed paper, we have introduced the notion of point-wise relatively statistical convergence, relatively equi-statistical convergence and relatively uniform statistical convergence of sequences of functions based on the difference operator o
Externí odkaz:
https://doaj.org/article/c4420b95969e42db86e83cf2a9afec96
Publikováno v:
Journal of Function Spaces, Vol 2022 (2022)
Two concepts—one of Darbo-type theorem and the other of Banach sequence spaces—play a very important and active role in ongoing research on existence problems. We first demonstrate the generalized Darbo-type fixed point theorems involving the con
Externí odkaz:
https://doaj.org/article/20cc7adb4e2d4be3afcea74a1b9f06ab
Publikováno v:
Journal of Mathematics, Vol 2022 (2022)
Roll motion is one of the key motions related to a vessel’s dynamic stability. It is essential for the dynamic stability of ships in the realistic sea. For this research study, we have investigated the parameters involved in damping of the ship. In
Externí odkaz:
https://doaj.org/article/a1e9cc38800243199b845bd76ec5e7dd
Publikováno v:
Journal of Function Spaces, Vol 2018 (2018)
We first define the notion of lacunary statistical convergence of order (α,β), and taking this notion into consideration, we introduce some seminormed difference sequence spaces over n-normed spaces with the help of Musielak-Orlicz function M=(Mk)
Externí odkaz:
https://doaj.org/article/c14445a97d9a4d68b3c6b558da7f6832